-
Establishment of a prognostic signature for lung adenocarcinoma using cuproptosis-related lncRNAs.
To establish a prognostic signature for lung adenocarcinoma (LUAD) based on cuproptosis-related long non-coding RNAs (lncRNAs), and to study the immune-related functions of LUAD.
First, transcriptome data and clinical data related to LUAD were downloaded from the Cancer Genome Atlas (TCGA), and cuproptosis-related genes were analyzed to identify cuproptosis-related lncRNAs. Univariate COX analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate COX analysis were performed to analyze the cuproptosis-related lncRNAs, and a prognostic signature was established. Second, univariate COX analysis and multivariate COX analysis were performed for independent prognostic analyses. Receiver operating characteristic (ROC) curves, C index, survival curve, nomogram, and principal component analysis (PCA) were performed to evaluate the results of the independent prognostic analyses. Finally, gene enrichment analyses and immune-related function analyses were also carried out.
(1) A total of 1,297 cuproptosis-related lncRNAs were screened. (2) A LUAD prognostic signature containing 13 cuproptosis-related lncRNAs was constructed (NIFK-AS1, AC026355.2, SEPSECS-AS1, AL360270.1, AC010999.2, ABCA9-AS1, AC032011.1, AL162632.3, LINC02518, LINC0059, AL031600.2, AP000346.1, AC012409.4). (3) The area under the multi-indicator ROC curves at 1, 3, and 5 years were AUC1 = 0.742, AUC2 = 0.708, and AUC3 = 0.762, respectively. The risk score of the prognostic signature could be used as an independent prognostic factor that was independent of other clinical indicators. (4) The results of gene enrichment analyses showed that 13 biomarkers were primarily related to amoebiasis, the wnt signaling pathway, hematopoietic cell lineage. The ssGSEA volcano map showed significant differences between high- and low-risk groups in immune-related functions, such as human leukocyte antigen (HLA), Type_II_IFN_Reponse, MHC_class_I, and Parainflammation (P < 0.001).
Thirteen cuproptosis-related lncRNAs may be clinical molecular biomarkers for the prognosis of LUAD.
Yalimaimaiti S
,Liang X
,Zhao H
,Dou H
,Liu W
,Yang Y
,Ning L
... -
《BMC BIOINFORMATICS》
-
A cuproptosis-related long non-coding RNA signature to predict the prognosis and immune microenvironment characterization for lung adenocarcinoma.
Cuproptosis or copper-dependent cell death is a newly identified non-apoptotic cell death pathway which plays a critical role in the development of multiple cancers. Long non-coding RNAs (lncRNAs) are increasingly recognized as crucial regulators of programmed cell death and lung adenocarcinoma (LUAD) development, and a comprehensive understanding of cuproptosis-related lncRNAs may improve prognosis prediction of LUAD. However, few studies have explored the association of cuproptosis-related lncRNAs with the prognosis of LUAD.
The RNA sequencing data and corresponding clinical information of patients were extracted from The Cancer Genome Atlas (TCGA) database. Five hundred LUAD patients were randomly divided into a training (n=250) and a testing cohort (n=250). Pearson correlations were performed to identify cuproptosis-related lncRNAs, and univariate Cox regression was performed to screen prognostic lncRNAs. A cuproptosis-related lncRNAs prognostic signature (CLPS) was constructed by the least absolute shrinkage and selection operator Cox regression. Kaplan-Meier analysis, receiver operating characteristic curves, and multivariate Cox regression were performed to verify the prognostic performance of CLPS. Additionally, immune cell infiltration was estimated using the single-sample gene-set enrichment analysis. pRRophetic algorithm and Tumor Immune Dysfunction and Exclusion algorithm were used to assess the immunotherapy and chemotherapy response, respectively.
CLPS was established based on 61 cuproptosis-related prognostic lncRNAs and exhibited a satisfactory performance predicting LUAD patients' survival (area under the curve at 1, 3, 5 years was 0.784, 0.749, 0.775, respectively). multivariate Cox analysis confirmed the independent prognostic effect of CLPS (hazard ratio: 1.128; 95% confidence interval: 1.071-1.189; P<0.001), and a nomogram containing it exhibited robust validity in prognostic prediction. We further demonstrated a higher CLPS-risk score was associated with lower levels of signatures including immune cell infiltration, immune activation, and immune checkpoints.
The CLPS serves as an effective predictor for the prognosis and therapeutic responses of LUAD patients. Our findings provide promising novel biomarkers and therapeutic targets for LUAD.
Ma S
,Zhu J
,Wang M
,Zhu J
,Wang W
,Xiong Y
,Jiang R
,Seetharamu N
,Abrão FC
,Puthamohan VM
,Liu L
,Jiang T
... -
《-》
-
A cuproptosis-related lncRNAs risk model to predict prognosis and guide immunotherapy for lung adenocarcinoma.
Cuproptosis, one of the newest forms of cell death induction, is attracting mounting attention. However, the role of cuproptosis in lung cancer is currently unclear. In this study, we constructed a prognostic signature utilizing cuproptosis-related long noncoding RNAs (CRL) in lung adenocarcinoma (LUAD) and researched its clinical and molecular function.
RNA-related and clinical data were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed CRLs were screened using the 'limma' package of R software. We used coexpression analysis and univariate Cox analysis to further identify prognostic CRLs. Applying least absolute shrinkage and selection operator (LASSO) regression and Cox regression models, a prognostic risk model based on 16 prognostic CRLs was constructed. To validate prognostic CRL function in LUAD, vitro experiments were conducted to explore the expression of GLIS2-AS1, LINC01230, and LINC00592 in LUAD. Subsequently, according to a formula, patients in the training, test, and overall groups were split into high- and low-risk groups. Kaplan-Meier and receiver operating characteristic (ROC) analyses were applied to assess the predictability of the risk model. Finally, the associations between risk signature and immunity-related analysis, somatic mutation, principal component analysis (PCA), enriched molecular pathways, and drug sensitivity was investigated.
A cuproptosis-related long noncoding RNAs (lncRNAs) signature was constructed. Using quantitative polymerase chain reaction (qPCR) trial, we verified that the expressions of GLIS2-AS1, LINC01230, and LINC00592 in LUAD cell lines and tissues were consistent with the above screening results. Based on this signature, a total of 471 LUAD samples from TCGA data set were split into two risk groups based on the computed risk score. The risk model showed a better capacity in predicting prognosis than traditional clinicopathological features. Moreover, significant differences were found in immune cell infiltration, drug sensitivity, and immune checkpoint expression between the two risk groups.
The CRLs signature was shown to be a prospective biomarker to forecast prognosis in patients with LUAD and presents new insights for personalized treatment of LUAD.
Li Q
,Wang T
,Zhu J
,Zhang A
,Wu A
,Zhou Y
,Shi J
... -
《-》
-
A cuproptosis-related lncRNA signature for predicting prognosis and immunotherapy response of lung adenocarcinoma.
Copper-induced cell death (cuproptosis) is a new regulatory cell death mechanism. Long noncoding RNAs (lncRNAs) are related to tumor immunity and metastasis. However, the correlation of cuproptosis-related lncRNAs with the immunotherapy response and prognosis of lung adenocarcinoma (LUAD) patients is not clear.
We obtained the clinical characteristics and transcriptome data from TCGA-LUAD dataset (containing 539 LUAD and 59 paracancerous tissues). By utilizing LASSO-penalized Cox regression analysis, we identified a prognostic signature composed of cuproptosis-related lncRNAs. This signature was then utilized to segregate patients into two different risk categories based on their respective risk scores. The identification of differentially expressed genes (DEGs) between high- and low-risk groups was carried out using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We evaluated the immunotherapy response by analyzing tumor mutational burden (TMB), immunocyte infiltration and Tumor Immune Dysfunction and Exclusion (TIDE) web application. The "pRRophetic" R package was utilized to conduct further screening of potential therapeutic drugs for their sensitivity.
We ultimately identified a prognostic risk signature that includes six cuproptosis-related lncRNAs (AP003778.1, AC011611.2, CRNDE, AL162632.3, LY86-AS1, and AC090948.1). Compared with clinical characteristics, the signature was significantly correlated with prognosis following the control of confounding variables (HR = 2.287, 95% CI = 1.648-3.174, p ˂ 0.001), and correctly predicted 1-, 2-, and 3-year overall survival (OS) rates (AUC value = 0.725, 0.715, and 0.662, respectively) in LUAD patients. In terms of prognosis, patients categorized as low risk exhibited more positive results in comparison to those in the high-risk group. The enrichment analysis showed that the two groups had different immune signaling pathways. Immunotherapy may offer a more appropriate treatment option for high-risk patients due to their higher TMB and lower TIDE scores. The higher risk score may demonstrate increased sensitivity to bexarotene, cisplatin, epothilone B, and vinorelbine.
Based on cuproptosis-related lncRNAs, we constructed and validated a novel risk signature that may be used to predict immunotherapy efficacy and prognosis in LUAD patients.
Yu S
,Tang L
,Zhang Q
,Li W
,Yao S
,Cai Y
,Cheng H
... -
《HEREDITAS》
-
Cuproptosis-related lncRNA predict prognosis and immune response of lung adenocarcinoma.
Lung adenocarcinoma (LUAD) accounts for 50% of lung cancers, with high mortality and poor prognosis. Long non-coding RNA (lncRNA) plays a vital role in the progression of tumors. Cuproptosis is a newly discovered form of cell death that is highly investigated. Therefore, in the present study, we aimed to investigate the role of cuproptosis-related lncRNA signature in clinical prognosis prediction and immunotherapy and the relationship with drug sensitivity.
Genomic and clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and cuproptosis-related genes were obtained from cuproptosis-related studies. The prognostic signature was constructed by co-expression analysis and Cox regression analysis. Patients were divided into high and low risk groups, and then, a further series of model validations were carried out to assess the prognostic value of the signature. Subsequently, lncRNAs were analyzed for gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes Enrichment (KEGG), immune-related functions, and tumor mutation burden (TMB). Finally, we used tumor immune dysfunction and exclusion (TIDE) algorithms on immune escape and immunotherapy of cuproptosis-related lncRNAs, thereby identifying its sensitivity toward potential drugs for LUAD.
A total of 16 cuproptosis-related lncRNAs were obtained, and a prognostic signature was developed. We found that high-risk patients had worse overall survival (OS) and progression-free survival (PFS) and higher mortality. Independent prognostic analyses, ROC, C-index, and nomogram showed that the cuproptosis-related lncRNAs can accurately predict the prognosis of patients. The nomogram and heatmap showed a distinct distribution of the high- and low-risk cuproptosis-related lncRNAs. Enrichment analysis showed that the biological functions of lncRNAs are associated with tumor development. We also found that immune-related functions, such as antiviral activity, were suppressed in high-risk patients who had mutations in oncogenes. OS was poorer in patients with high TMB. TIDE algorithms showed that high-risk patients have a greater potential for immune escape and less effective immunotherapy.
To conclude, the 16 cuproptosis-related lncRNAs can accurately predict the prognosis of patients with LUAD and may provide new insights into clinical applications and immunotherapy.
Wang F
,Lin H
,Su Q
,Li C
... -
《World Journal of Surgical Oncology》