-
A cause-effect relationship between Graves' disease and the gut microbiome contributes to the thyroid-gut axis: A bidirectional two-sample Mendelian randomization study.
An association between Graves' disease (GD) and the gut microbiome has been identified, but the causal effect between them remains unclear.
Bidirectional two-sample Mendelian randomization (MR) analysis was used to detect the causal effect between GD and the gut microbiome. Gut microbiome data were derived from samples from a range of different ethnicities (18,340 samples) and data on GD were obtained from samples of Asian ethnicity (212,453 samples). Single nucleotide polymorphisms (SNPs) were selected as instrumental variables according to different criteria. They were used to evaluate the causal effect between exposures and outcomes through inverse-variance weighting (IVW), weighted median, weighted mode, MR-Egger, and simple mode methods. F-statistics and sensitivity analyses were performed to evaluate bias and reliability.
In total, 1,560 instrumental variables were extracted from the gut microbiome data (p< 1 × 105). The classes Deltaproteobacteria [odds ratio (OR) = 3.603] and Mollicutes, as well as the genera Ruminococcus torques group, Oxalobacter, and Ruminococcaceae UCG 011 were identified as risk factors for GD. The family Peptococcaceae and the genus Anaerostipes (OR = 0.489) were protective factors for GD. In addition, 13 instrumental variables were extracted from GD (p< 1 × 10-8), causing one family and eight genera to be regulated. The genus Clostridium innocuum group (p = 0.024, OR = 0.918) and Anaerofilum (p = 0.049, OR = 1.584) had the greatest probability of being regulated. Significant bias, heterogeneity, and horizontal pleiotropy were not detected.
A causal effect relationship exists between GD and the gut microbiome, demonstrating regulatory activity and interactions, and thus providing evidence supporting the involvement of a thyroid-gut axis.
Cao J
,Wang N
,Luo Y
,Ma C
,Chen Z
,Chenzhao C
,Zhang F
,Qi X
,Xiong W
... -
《Frontiers in Immunology》
-
Exploring reciprocal causation: bidirectional mendelian randomization study of gut microbiota composition and thyroid cancer.
While an association between gut microbiota composition and thyroid cancer (TC) has been observed, the directionality and causality of this relationship remain unclear.
We conducted a bidirectional two-sample Mendelian randomization (MR) analysis to investigate the causal effect between gut microbiota composition and TC. Gut microbiota data were derived from a diverse population encompassing various ethnicities (n = 18,340 samples), while TC data were sourced from an European population (n = 218,792 samples). Instrumental variables, represented by single nucleotide polymorphisms (SNPs), were employed to assess the causal relationship using multiple MR methods, including inverse-variance weighting (IVW), weighted median, weighted mode, MR-Egger, and simple mode. F-statistics and sensitivity analyses were performed to evaluate the robustness of the findings.
Our investigation identified a comprehensive set of 2934 instrumental variables significantly linked to gut microbiota composition (p < 1 × 10-5). The analysis illuminated notable candidates within the phylum Euryarchaeota, including families Christensenellaceae and Victivallaceae, and genera Methanobrevibacter, Ruminococcus2, and Subdoligranulum, which emerged as potential risk factors for TC. On the other hand, a protective influence against TC was attributed to class Betaproteobacteria, family FamilyXI, and genera Anaerofilum, Odoribacter, and Sutterella, alongside order Burkholderiales. Further enhancing our insights, the integration of 7 instrumental variables from TC data (p < 1 × 10-5) disclosed the regulatory potential of one family and five genera. Notably, the genus Coprobacter innocuum group (p = 0.012, OR = 0.944) exhibited the highest probability of regulation. Our meticulous analyses remained free from significant bias, heterogeneity, or horizontal pleiotropy concerns.
Through a bidirectional two-sample Mendelian randomization approach, we elucidated a potential bidirectional causal relationship between gut microbiota composition and TC. Specific microbial taxa were associated with an increased risk or conferred protection against TC. These findings advance our understanding of the complex interplay between the gut microbiota and TC pathogenesis, offering new insights into the therapeutic potential of modulating the gut microbiota for managing TC.
Zhou J
,Zhang X
,Xie Z
,Li Z
... -
《-》
-
Bacteroidaceae, Bacteroides, and Veillonella: emerging protectors against Graves' disease.
Graves' disease (GD) is the most common cause of hyperthyroidism, and its pathogenesis remains incompletely elucidated. Numerous studies have implicated the gut microbiota in the development of thyroid disorders. This study employs Mendelian randomization analysis to investigate the characteristics of gut microbiota in GD patients, aiming to offer novel insights into the etiology and treatment of Graves' disease.
Two-sample Mendelian randomization (MR) analysis was employed to assess the causal relationship between Graves' disease and the gut microbiota composition. Gut microbiota data were sourced from the international consortium MiBioGen, while Graves' disease data were obtained from FINNGEN. Eligible single nucleotide polymorphisms (SNPs) were selected as instrumental variables. Multiple analysis methods, including inverse variance-weighted (IVW), MR-Egger regression, weighted median, weighted mode, and MR-RAPS, were utilized. Sensitivity analyses were conducted employing MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis as quality control measures.
The Mendelian randomization study conducted in a European population revealed a decreased risk of Graves' disease associated with Bacteroidaceae (Odds ratio (OR) [95% confidence interval (CI)]: 0.89 [0.89 ~ 0.90], adjusted P value: <0.001), Bacteroides (OR: [95% CI]: 0.555 [0.437 ~ 0.706], adjusted P value: <0.001), and Veillonella (OR [95% CI]: 0.632 [0.492 ~ 0.811], adjusted P value: 0.016). No significant evidence of heterogeneity, or horizontal pleiotropy was detected. Furthermore, the preliminary MR analysis identified 13 bacterial species including Eubacterium brachy group and Family XIII AD3011 group, exhibiting significant associations with Graves' disease onset, suggesting potential causal effects.
A causal relationship exists between gut microbiota and Graves' disease. Bacteroidaceae, Bacteroides, and Veillonella emerge as protective factors against Graves' disease development. Prospective probiotic supplementation may offer a novel avenue for adjunctive treatment in the management of Graves' disease in the future.
Liu S
,Li F
,Cai Y
,Ren L
,Sun L
,Gang X
,Wang G
... -
《Frontiers in Cellular and Infection Microbiology》
-
Causal relationship between gut microbiome and sex hormone-binding globulin: A bidirectional two-sample Mendelian randomization study.
Currently, there is a variety of evidence linking the gut microbiota to changes in sex hormones. In contrast, the causal relationship between SHBG, a carrier of sex hormones, and the gut microbiota is unclear.
Bidirectional two-sample Mendelian randomization (MR) analysis was used to detect the causal effect between SHBG and the gut microbiome. Summary statistics of genome-wide association studies (GWASs) for the gut microbiome and SHBG were obtained from public datasets. Inverse-variance weighting (IVW), weighted median, weighted mode, MR-Egger and simple mode methods were used to operate the MR analysis. F-statistics and sensitivity analyses performed to evaluate bias and reliability.
When we set gut microbiome as exposure and SHBG as outcome, we identified nine causal relationships. In males, Coprobacter (PIVW = 2.01 × 10-6 ), Ruminococcus2 (PIVW = 3.40 × 10-5 ), Barnesiella (PIVW = 2.79 × 10-2 ), Actinobacteria (PIVW = 3.25 × 10-2 ) and Eubacterium fissicatena groups (PIVW = 3.64 × 10-2 ) were associated with lower SHBG levels; Alphaproteobacteria (PIVW = 1.61 × 10-2 ) is associated with higher SHBG levels. In females, Lachnoclostridium (PIVW = 9.75 × 10-3 ) and Defluviitaleaceae UCG011 (PIVW = 3.67 × 10-2 ) were associated with higher SHBG levels; Victivallaceae (PIVW = 2.23 × 10-2 ) was associated with lower SHBG levels. According to the results of reverse MR analysis, three significant causal effect of SHBG was found on gut microbiota. In males, Dorea (PIVW = 4.17 × 10-2 ) and Clostridiales (PIVW = 4.36 × 10-2 ) were associated with higher SHBG levels. In females, Lachnoclostridium (PIVW = 7.44 × 10-4 ) was associated with higherr SHBG levels. No signifcant heterogeneity of instrumental variables or horizontal pleiotropy was found in bidirectional two-sample MR analysis.
This study may provide new insights into the causal relationship between the gut microbiome and sex hormone-binding protein levels, as well as new treatment and prevention strategies for diseases such as abnormal changes in sex hormones.
Yan Z
,Zheng Z
,Xia T
,Ni Z
,Dou Y
,Liu X
... -
《-》
-
Graves' Disease and Rheumatoid Arthritis: A Bidirectional Mendelian Randomization Study.
The frequent coexistence of Graves' disease (GD) and rheumatoid arthritis (RA) has been cited and discussed in observational studies, but it remains a question as to whether there is a causal effect between the two diseases.
We retrieved genome-wide association study (GWAS) summary data of GD and RA from BioBank Japan (BBJ). Single nucleotide polymorphisms (SNPs) associated with diseases of interest were selected as instrumental variables (IVs) at a genome-wide significance level (P < 5.0 × 10-8). The random-effects inverse variance weighted method (IVW) was used to combine the causal effect of IVs. The horizontal pleiotropy effect was analyzed by MR-Egger and weighted median method sensitivity test. A leave-one-out analysis was conducted to avoid bias caused by a single SNP. The statistical power of our MR result was calculated according to Brion's method.
Our study discovered a bidirectional causal effect between GD and RA. The presence of RA may increase the risk of GD by 39% (OR 1.39, 95% CI 1.10-1.75, P = 0.007). Similarly, the existence of GD may increase the risk of RA by 30% (OR 1.30, 95% CI 0.94-1.80, P = 0.112). Our study provides 100% power to detect the causal effect of RA on GD risk, and vice versa.
We found a bidirectional causal effect between GD and RA in an Asian population. Our study supported the clinical need for screening GD in RA patients, and vice versa. The potential benefit of sound management of RA in GD patients (or GD in RA patients) merits excellent attention. Moreover, novel satisfactory medicine for RA may be applicable to GD and such potential is worthy of further investigation.
Wu D
,Xian W
,Hong S
,Liu B
,Xiao H
,Li Y
... -
《Frontiers in Endocrinology》