-
The BISTIM study: a randomized controlled trial comparing dual ovarian stimulation (duostim) with two conventional ovarian stimulations in poor ovarian responders undergoing IVF.
Is the total number of oocytes retrieved with dual ovarian stimulation in the same cycle (duostim) higher than with two consecutive antagonist cycles in poor responders?
Based on the number of total and mature oocytes retrieved in women with poor ovarian response (POR), there is no benefit of duostim versus two consecutive antagonist cycles.
Recent studies have shown the ability to obtain oocytes with equivalent quality from the follicular and the luteal phase, and a higher number of oocytes within one cycle when using duostim. If during follicular stimulation smaller follicles are sensitized and recruited, this may increase the number of follicles selected in the consecutive luteal phase stimulation, as shown in non-randomized controlled trials (RCT). This could be particularly relevant for women with POR.
This is a multicentre, open-labelled RCT, performed in four IVF centres from September 2018 to March 2021. The primary outcome was the number of oocytes retrieved over the two cycles. The primary objective was to demonstrate in women with POR that two ovarian stimulations within the same cycle (first in the follicular phase, followed by a second in the luteal phase) led to the retrieval of 1.5 (2) more oocytes than the cumulative number of oocytes from two consecutive conventional stimulations with an antagonist protocol. In a superiority hypothesis, with power 0.8 alpha-risk 0.05 and a 35% cancellation rate, 44 patients were needed in each group. Patients were randomized by computer allocation.
Eighty-eight women with POR, defined using adjusted Bologna criteria (antral follicle count ≤5 and/or anti-Müllerian hormone ≤1.2 ng/ml) were randomized, 44 in the duostim group and 44 in the conventional (control) group. HMG 300 IU/day with flexible antagonist protocol was used for ovarian stimulation, except in luteal phase stimulation of the duostim group. In the duostim group, oocytes were pooled and inseminated after the second retrieval, with a freeze-all protocol. Fresh transfers were performed in the control group, frozen embryo transfers were performed in both control and duostim groups in natural cycles. Data underwent intention-to-treat and per-protocol analyses.
There was no difference between the groups regarding demographics, ovarian reserve markers, and stimulation parameters. The mean (SD) cumulative number of oocytes retrieved from two ovarian stimulations was not statistically different between the control and duostim groups, respectively, 4.6 (3.4) and 5.0 (3.4) [mean difference (MD) [95% CI] +0.4 [-1.1; 1.9], P = 0.56]. The mean cumulative numbersof mature oocytes and total embryos obtained were not significantly different between groups. The total number of embryos transferred by patient was significantly higher in the control group 1.5 (1.1) versus the duostim group 0.9 (1.1) (P = 0.03). After two cumulative cycles, 78% of women in the control group and 53.8% in the duostim group had at least one embryo transfer (P = 0.02). There was no statistical difference in the mean number of total and mature oocytes retrieved per cycle comparing Cycle 1 versus Cycle 2, both in control and duostim groups. The time to the second oocyte retrieval was significantly longer in controls, at 2.8 (1.3) months compared to 0.3 (0.5) months in the duostim group (P < 0.001). The implantation rate was similar between groups. The cumulative live birth rate was not statistically different, comparing controls versus the duostim group, 34.1% versus 17.9%, respectively (P = 0.08). The time to transfer resulting in an ongoing pregnancy did not differ in controls 1.7 (1.5) months versus the duostim group, 3.0 (1.6) (P = 0.08). No serious adverse events were reported.
The RCT was impacted by the coronavirus disease 2019 pandemic and the halt in IVF activities for 10 weeks. Delays were recalculated to exclude this period; however, one woman in the duostim group could not have the luteal stimulation. We also faced unexpected good ovarian responses and pregnancies after the first oocyte retrieval in both groups, with a higher incidence in the control group. However, our hypothesis was based on 1.5 more oocytes in the luteal than the follicular phase in the duostim group, and the number of patients to treat was reached in this group (N = 28). This study was only powered for cumulative number of oocytes retrieved.
This is the first RCT comparing the outcome of two consecutive cycles, either in the same menstrual cycle or in two consecutive menstrual cycles. In routine practice, the benefit of duostim in patients with POR regarding fresh embryo transfer is not confirmed in this RCT: first, because this study demonstrates no improvement in the number of oocytes retrieved in the luteal phase after follicular phase stimulation, in contrast to previous non-randomized studies, and second, because the freeze-all strategy avoids a pregnancy with fresh embryo transfer after the first cycle. However, duostim appears to be safe for women. In duostim, the two consecutive processes of freezing/thawing are mandatory and increase the risk of wastage of oocytes/embryos. The only benefit of duostim is to shorten the time to a second retrieval by 2 weeks if accumulation of oocytes/embryos is needed.
This is an investigator-initiated study supported by a research Grant from IBSA Pharma. N.M. declares grants paid to their institution from MSD (Organon France); consulting fees from MSD (Organon France), Ferring, and Merck KGaA; honoraria from Merck KGaA, General Electrics, Genevrier (IBSA Pharma), and Theramex; support for travel and meetings from Theramex, Merck KGaG, and Gedeon Richter; and equipment paid to their institution from Goodlife Pharma. I.A. declares honoraria from GISKIT and support for travel and meetings from GISKIT. G.P.-B. declares Consulting fees from Ferring and Merck KGaA; honoraria from Theramex, Gedeon Richter, and Ferring; payment for expert testimony from Ferring, Merck KGaA, and Gedeon Richter; and support for travel and meetings from Ferring, Theramex, and Gedeon Richter. N.C. declares grants from IBSA pharma, Merck KGaA, Ferring, and Gedeon Richter; support for travel and meetings from IBSA pharma, Merck KGaG, MSD (Organon France), Gedeon Richter, and Theramex; and participation on advisory board from Merck KGaA. E.D. declares support for travel and meetings from IBSA pharma, Merck KGaG, MSD (Organon France), Ferring, Gedeon Richter, Theramex, and General Electrics. C.P.-V. declares support for travel and meetings from IBSA Pharma, Merck KGaA, Ferring, Gedeon Richter, and Theramex. M.Pi. declares support for travel and meetings from Ferring, Gedeon Richetr, and Merck KGaA. M.Pa. declares honoraria from Merck KGaA, Theramex, and Gedeon Richter; support for travel and meetings from Merck KGaA, IBSA Pharma, Theramex, Ferring, Gedeon Richter, and MSD (Organon France). H.B.-G. declares honoraria from Merck KGaA, and Gedeon Richter and support for travel and meetings from Ferring, Merck KGaA, IBSA Pharma, MSD (Organon France), Theramex, and Gedeon Richter. S.G. and M.B. have nothing to declare.
Registration number EudraCT: 2017-003223-30. ClinicalTrials.gov identifier: NCT03803228.
EudraCT: 28 July 2017. ClinicalTrials.gov: 14 January 2019.
3 September 2018.
Massin N
,Abdennebi I
,Porcu-Buisson G
,Chevalier N
,Descat E
,Piétin-Vialle C
,Goro S
,Brussieux M
,Pinto M
,Pasquier M
,Bry-Gauillard H
... -
《-》
-
Pretreatment with luteal estradiol for programming antagonist cycles compared to no pretreatment in advanced age women stimulated with corifollitropin alfa: a non-inferiority randomized controlled trial.
Does luteal estradiol (E2) pretreatment give a similar number of retrieved oocytes compared to no-pretreatment in advanced-aged women stimulated with corifollitropin alfa in an antagonist protocol?
Programming antagonist cycles with luteal E2 gave similar number of retrieved oocytes compared to no-pretreatment in women aged 38-42 years.
Programming antagonist cycles with luteal E2 pretreatment is a valuable tool to organize the IVF procedure better and is safe without any known impact on cycle outcome. However, variable effects were observed on the number of retrieved oocytes depending on the treated population. In advanced-age women, recruitable follicles tend to decrease in number and to be more heterogeneous in size but it remains unclear if estradiol pretreatment could change the oocyte yield through its negative feed-back effect on FSH intercycle rise.
This non-blinded randomized controlled non-inferiority trial was conducted between 2016 and 2022 with centrally computerized randomization and concealed allocation. Participants were 324 women aged 38-42 years undergoing IVF treatment. The primary endpoint was the total number of retrieved oocytes. Statistical analysis was performed with one-sided alpha risk of 2.5% and 95% confidence interval (CI) with the non-inferiority of E2 pretreatment proved by a P value <0.025 and a lower delta margin of the CI within two oocytes compared to no pretreatment. Secondary endpoints were duration and total dosage of recombinant FSH, cancellation rate, percentage of oocyte pick-up (OPU) on working days, total number of metaphase II oocytes and obtained embryos, fresh transfer live birth rate, and cumulative live birth rate.
This multicentric study enrolled women with regular cycles, weight >50 kg and body mass index <32, IVF cycle 1-2. According to randomization, micronized estradiol 2 mg twice a day was started on days 20-24 and continued until Wednesday beyond the onset of menses followed by administration of corifollitropin alfa on Friday, i.e. stimulation (S)1 or from D1-3 of a natural cycle in unpretreated patients. GnRH antagonist was started at S6 and additional FSH at S8.
Basal characteristics were similar in patients randomized in E2 pretreated (n = 164) and non-pretreated (n = 160) groups (intended to treat (ITT) population). A total of 291 patients started treatment (per protocol (PP) population), 147 in E2 pretreated group with a mean number [SD] of pre-treatment days 9.8 [2.6] and 144 in the non-pretreated group. Despite advanced age, oocyte yields ranged from 0 to 29 in both groups with a median number of 6 retrieved oocytes in accordance with a mean anti-Müllerian hormone (AMH) level above 1.2 ng/ml. We demonstrated the non-inferiority of E2 pretreatment with a mean difference of -0.1 oocyte 95% CI [-1.5; 1.3] P = 0.004 in the PP population and a mean difference of -0.44 oocyte [-1.84; 0.97] P = 0.014 in the ITT population. Oocyte retrieval was more often on working days in E2 pretreated patients (91.9 versus 74.2%, P < 0.001). In patients reaching OPU, the duration of stimulation was statistically significantly longer (11.7 [1.7] versus 10.8 [1.8] days, P < 0.001) and the extra FSH dosage in addition to corifollitropin alfa was statistically significantly higher (1040 [548] versus 778 [504] IU, P < 0.001) in E2 pretreated than non-pretreated patients. We did not observe any significant differences in the number of retrieved oocytes (8.4 [6.1] versus 9.1 [6.0]), in the number of Metaphase 2 oocytes (7 [5.5] versus 7.3 [5.2]) nor in the number of obtained embryos (5 [4.6] versus 5.2 [4.2]) in E2 pretreated patients compared to non-pretreated patients. The live birth rate after fresh transfer (16.2% versus 18.5%, respectively), and the cumulative live birth rate per patient (17.7% versus 22.9%, respectively) were similar in both groups. Among the PP population, 31.6% of patients fulfilled the criteria for group 4 of Poseïdon classification (AMH <1.2 ng/ml and/or antral follicle count <5). In this sub-group of patients, we observed in contrast a statistically higher number of retrieved oocytes in E2 pretreated patients compared to non-pretreated (5.1 [3.8] versus 3.4 [2.7], respectively, the mean difference of +1.7 oocyte [0.2; 3.2] P = 0.022) but without significant difference in the cumulative live birth rate per patient (15.7% versus 7.3%, respectively).
Our stimulated women older than 38 years obtained a wide range of collected oocytes suggesting very different stages of ovarian aging in both groups. E2 pretreatment is more likely to increase oocyte yield at the stage of ovarian aging characterized by asynchrony of a reduced follicular cohort. Another limitation is the sample size in sub-group analysis of patients with AMH <1.2 ng/ml. Finally, the absence of placebo for pretreatment could also introduce possible bias.
Programming antagonist cycles with luteal E2 pretreatment seems a useful tool in advanced age women to better schedule oocyte retrievals on working days. However, the potential benefit of the number of collected oocytes remains to be demonstrated in a larger population displaying the characteristics of decreased ovarian reserve encountered in Poseïdon classification.
Research grant from (MSD) Organon, France. I.C., S.D., B.B., X.M., S.G., and C.J. have no conflict of interest with this study. I.C.D. declares fees as speaker from Merck KGaA, Gedeon Richter, MSD (Organon, France), Ferring, Theramex, and IBSA and participation on advisory board from Merck KGaA. I.C.D. also declares consulting fees, and travel and meeting support from Merck KGaA. N.M. declares grants paid to their institution from MSD (Organon, France); consulting fees from MSD (Organon, France), Ferring, and Merck KGaA; honoraria from Merck KGaA, General Electrics, Genevrier (IBSA Pharma), and Theramex; support for travel and meetings from Theramex, Merck KGaG, and Gedeon Richter; and equipment paid to their institution from Goodlife Pharma. N.C. declares grants from IBSA Pharma, Merck KGaA, Ferring, and Gedeon Richter; support for travel and meetings from IBSA Pharma, Merck KGaG, MSD (Organon, France), Gedeon Richter, and Theramex; and participation on advisory board from Merck KGaA. A.G.L. declares fees as speaker from Merck KGaA, Gedeon Richter, MSD (Organon, France), Ferring, Theramex, and IBSA.
ClinicalTrials.gov NCT02884245.
29 August 2016.
4 November 2016.
Cédrin-Durnerin I
,Carton I
,Massin N
,Chevalier N
,Dubourdieu S
,Bstandig B
,Michelson X
,Goro S
,Jung C
,Guivarc'h-Lévêque A
... -
《-》
-
Does dual oocyte retrieval with continuous FSH administration increase the number of mature oocytes in low responders? An open-label randomized controlled trial.
Boudry L
,Mateizel I
,Wouters K
,Papaleo E
,Mackens S
,De Vos M
,Racca A
,Adriaenssens T
,Tournaye H
,Blockeel C
... -
《-》
-
Impact of endometrial preparation on early pregnancy loss and live birth rate after frozen embryo transfer: a large multicenter cohort study (14 421 frozen cycles).
Does the endometrial preparation protocol (artificial cycle (AC) vs natural cycle (NC) vs stimulated cycle (SC)) impact the risk of early pregnancy loss and live birth rate after frozen/thawed embryo transfer (FET)?
In FET, ACs were significantly associated with a higher pregnancy loss rate and a lower live birth rate compared with SC or NC.
To date, there is no consensus on the optimal endometrial preparation in terms of outcomes. Although some studies have reported a higher pregnancy loss rate using AC compared with NC or SC, no significant difference was found concerning the pregnancy rate or live birth rate. Furthermore, no study has compared the three protocols in a large population.
A multicenter retrospective cohort study was conducted in nine reproductive health units in France using the same software to record medical files between 1 January 2012 and 31 December 2016. FET using endometrial preparation by AC, modified NC or SC were included. The primary outcome was the pregnancy loss rate at 10 weeks of gestation. The sample size required was calculated to detect an increase of 5% in the pregnancy loss rate (21-26%), with an alpha risk of 0.5 and a power of 0.8. We calculated that 1126 pregnancies were needed in each group, i.e. 3378 in total.
Data were collected by automatic extraction using the same protocol. All consecutive autologous FET cycles were included: 14 421 cycles (AC: n = 8139; NC: n = 3126; SC: n = 3156) corresponding to 3844 pregnancies (hCG > 100 IU/l) (AC: n = 2214; NC: n = 812; SC: n = 818). Each center completed an online questionnaire describing its routine practice for FET, particularly the reason for choosing one protocol over another.
AC represented 56.5% of FET cycles. Mean age of women was 33.5 (SD ± 4.3) years. The mean number of embryos transferred was 1.5 (±0.5). Groups were comparable, except for history of ovulation disorders (P = 0.01) and prior delivery (P = 0.03), which were significantly higher with AC. Overall, the early pregnancy loss rate was 31.5% (AC: 36.5%; NC: 25.6%; SC: 23.6%). Univariable analysis showed a significant association between early pregnancy loss rate and age >38 years, history of early pregnancy loss, ovulation disorders and duration of cryopreservation >6 months. After adjustment (multivariable regression), the early pregnancy loss rate remained significantly higher in AC vs NC (odds ratio (OR) 1.63 (95% CI) [1.35-1.97]; P < 0.0001) and in AC vs SC (OR 1.87 [1.55-2.26]; P < 0.0001). The biochemical pregnancy rate (hCG > 10 and lower than 100 IU/l) was comparable between the three protocols: 10.7% per transfer.
This study is limited by its retrospective design that generates missing data. Routine practice within centers was heterogeneous. However, luteal phase support and timing of embryo transfer were similar in AC. Univariable analysis showed no difference between centers. Moreover, a large number of parameters were included in the analysis.
Our study shows a significant increase in early pregnancy loss when using AC for endometrial preparation before FET. These results suggest either a larger use of NC or SC, or an improvement of AC by individualizing hormone replacement therapy for patients in order to avoid an excess of pregnancy losses.
The authors declare no conflicts of interest in relation to this work. G.P.-B. declares consulting fees from Ferring, Gedeon-Richter, Merck KGaA, Theramex, Teva; Speaker's fees or equivalent from Merck KGaA, Ferring, Gedeon-Richter, Theramex, Teva. N.C. declares consulting fees from Ferring, Merck KGaA, Theramex, Teva; Speaker's fees or equivalent from Merck KGaA, Ferring. C.R. declares a research grant from Ferring, Gedeon-Richter; consulting fees from Gedeon-Richter, Merck KGaA; Speaker's fees or equivalent from Merck KGaA, Ferring, Gedeon-Richter; E.M.d'A. declares Speaker's fees or equivalent from Merck KGaA, MSD, Ferring, Gedeon-Richter, Theramex, Teva. I.C-D. declares Speaker's fees or equivalent from Merck KGaA, MSD, Ferring, Gedeon-Richter, IBSA. N.M. declares a research grant from Merck KGaA, MSD, IBSA; consulting fees from MSD, Ferring, Gedeon-Richter, Merck KGaA; Speaker's fees or equivalent from Merck KGaA, MSD, Ferring, Gedeon-Richter, Teva, Goodlife, General Electrics.
N/A.
Vinsonneau L
,Labrosse J
,Porcu-Buisson G
,Chevalier N
,Galey J
,Ahdad N
,Ayel JP
,Rongières C
,Bouet PE
,Mathieu d'Argent E
,Cédrin-Durnerin I
,Pessione F
,Massin N
... -
《-》
-
Double versus single stimulation in young low prognosis patients followed by a fresh embryo transfer: a randomized controlled trial (DUOSTIM-fresh).
Does double stimulation, followed by a fresh embryo transfer (DUOSTIM fresh) give a higher number of good-quality blastocysts as compared with a single stimulation in young low prognosis patients?
Compared to single stimulation, DUOSTIM fresh leads to a significantly higher number of good quality blastocysts, without hindering fresh embryo transfer outcomes.
DUOSTIM (ovarian stimulation both in the follicular and luteal phase of the same cycle) is an innovative strategy to retrieve a higher number of oocytes in a shorter time frame, thus it is particularly appealing for poor ovarian responders. Three current limitations of dual stimulation are: (i) it is unclear whether outcomes of the second (luteal) wave result from the second stimulation, or a carry-over effect from previous follicular stimulation; (ii) the desynchronization between endometrium and ovaries and, (iii) lack of robust evidence. No previous studies explored DUOSTIM starting from the luteal phase, and with a fresh embryo transfer (DUOSTIM fresh).
This study is a randomized, controlled, single-center, superiority clinical trial comparing two different ovarian stimulation protocols: a double stimulation cycle versus a single stimulation cycle followed by fresh embryo transfer. The primary outcome was the number of good quality blastocysts obtained, while secondary outcomes included results from fresh embryo transfer (clinical pregnancy, miscarriage). A total of 120 women were enrolled in this study between October 2020 and October 2022, with a 1:1 allocation.
Only young (<40 years old) low prognosis (anti-Müllerian hormone <1.2 ng/ml) patients were recruited in the Reproductive Medicine Department of Dexeus University Hospital. In the investigational group, DUOSTIM fresh, the first stimulation was initiated in the luteal phase (Day 18-21 cycle) followed by a second stimulation 5 days post first oocyte retrieval, initiated in the follicular phase and a fresh embryo transfer of the best blastocyst generated (first or second cycle). The control group performed a follicular phase single stimulation cycle with a fresh embryo transfer.
Overall, 107 patients were analyzed, 53 in the investigational (DUOSTIM fresh) and 54 in the control arm (single stimulation). DUOSTIM fresh resulted in a significantly higher number of good quality blastocysts as compared to single stimulation (difference of mean 0.81, 95% CI 0.12-1.49). The mean percentage of cycles with embryo transfer was comparable (62.3% and 51.9%, respectively for double versus single stimulation). No significant differences were found for clinical outcomes following fresh embryo transfer with an ongoing pregnancy rate of 24.5% for DUOSTIM fresh versus 22.2%, for conventional IVF. Of interest comparisons between different stimulation cycles (A: luteal-phase DUOSTIM fresh, B: follicular-phase DUOSTIM fresh, and C: single stimulation) did not demonstrate any significant difference in terms of ovarian response with the mean (SD) number of mature oocytes being (A: 3.3 (2.9), B: 3.4 (3.4), and C: 3.5 (2.9), respectively).
Study sample size was calculated to detect differences on the mean number of good quality blastocysts. Therefore, results for secondary outcomes (embryo transfer rates and clinical pregnancy rates) should be interpreted with caution as exploratory findings that deserve future investigations.
Although DUOSTIM fresh results in a higher number of blastocysts as compared with a single stimulation in young low prognosis patients, the decision of performing dual stim should be evaluated with caution, considering that whether this may improve embryo transfers rate and pregnancy outcomes is still unclear. Results on cumulative-live-birth-rate are warranted.
The study was an investigator-initiated study supported by an unrestricted grant by Organon. N.P.P. has received grants from Merck Serono, Organon, Ferring Pharmaceutical, Theramex, and Besins Healthcare. N.P.P. has received consulting fees from Merck Serono, Organon, Besins Healthcare, and IBSA. N.P.P. has received honoraria for lectures from Merck Serono, Organon, Theramex, Roche Diagnostics, IBSA, Besins Healthcare, and Ferring. A.R. has received Research grants, honoraria for lectures from Merck Serono, MSD/Organon, Ferring Pharmaceuticals, Besins International, IBSA, Guerbet. The other authors declare that there is no conflict of interest to disclose with respect to the content of this article.
NCT04446845.
25 June 2020.
30 October 2020.
Racca A
,Rodriguez I
,Garcia S
,Arroyo G
,Polyzos NP
... -
《-》