Derivation and validation of a machine learning-based risk prediction model in patients with acute heart failure.

来自 PUBMED

作者:

Misumi KMatsue YNogi KFujimoto YKagiyama NKasai TKitai TOishi SAkiyama ESuzuki SYamamoto MKida KOkumura TNogi MIshihara SUeda TKawakami RSaito YMinamino T

展开

摘要:

Risk stratification is important in patients with acute heart failure (AHF), and a simple risk score that accurately predicts mortality is needed. The aim of this study is to develop a user-friendly risk-prediction model using a machine-learning method. A machine-learning-based risk model using least absolute shrinkage and selection operator (LASSO) regression was developed by identifying predictors of in-hospital mortality in the derivation cohort (REALITY-AHF), and its performance was externally validated in the validation cohort (NARA-HF) and compared with two pre-existing risk models: the Get With The Guidelines risk score incorporating brain natriuretic peptide and hypochloremia (GWTG-BNP-Cl-RS) and the acute decompensated heart failure national registry risk (ADHERE). In-hospital deaths in the derivation and validation cohorts were 76 (5.1 %) and 61 (4.9 %), respectively. The risk score comprised four variables (systolic blood pressure, blood urea nitrogen, serum chloride, and C-reactive protein) and was developed according to the results of the LASSO regression weighting the coefficient for selected variables using a logistic regression model (4 V-RS). Even though 4 V-RS comprised fewer variables, in the validation cohort, it showed a higher area under the receiver operating characteristic curve (AUC) than the ADHERE risk model (AUC, 0.783 vs. 0.740; p = 0.059) and a significant improvement in net reclassification (0.359; 95 % CI, 0.10-0.67; p = 0.006). 4 V-RS performed similarly to GWTG-BNP-Cl-RS in terms of discrimination (AUC, 0.783 vs. 0.759; p = 0.426) and net reclassification (0.176; 95 % CI, -0.08-0.43; p = 0.178). The 4 V-RS model comprising only four readily available data points at the time of admission performed similarly to the more complex pre-existing risk model in patients with AHF.

收起

展开

DOI:

10.1016/j.jjcc.2023.02.006

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(111)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读