Genetic causal relationship between age at menarche and benign oesophageal neoplasia identified by a Mendelian randomization study.
The occurrence and development of oesophageal neoplasia (ON) is closely related to hormone changes. The aim of this study was to investigate the causal relationships between age at menarche (AAMA) or age at menopause (AAMO) and benign oesophageal neoplasia (BON) or malignant oesophageal neoplasia (MON) from a genetic perspective.
Genome-wide association study (GWAS) summary data of exposures (AAMA and AAMO) and outcomes (BON and MON) were obtained from the IEU OpenGWAS database. We performed a two-sample Mendelian randomization (MR) study between them. The inverse variance weighted (IVW) was used as the main analysis method, while the MR Egger, weighted median, simple mode, and weighted mode were supplementary methods. The maximum likelihood, penalized weighted median, and IVW (fixed effects) were validation methods. We used Cochran's Q statistic and Rucker's Q statistic to detect heterogeneity. The intercept test of the MR Egger and global test of MR pleiotropy residual sum and outlier (MR-PRESSO) were used to detect horizontal pleiotropy, and the distortion test of the MR-PRESSO analysis was used to detect outliers. The leave-one-out analysis was used to detect whether the MR analysis was affected by single nucleotide polymorphisms (SNPs). In addition, the MR robust adjusted profile score (MR-RAPS) method was used to assess the robustness of MR analysis.
The random-effects IVW results showed that AAMA had a negative genetic causal relationship with BON (odds ratio [OR] = 0.285 [95% confidence interval [CI]: 0.130-0.623], P = 0.002). The weighted median, maximum likelihood, penalized weighted median, and IVW (fixed effects) were consistent with random-effects IVW (P < 0.05). The MR Egger, simple mode and weighted mode results showed that AAMA had no genetic causal relationship with BON (P > 0.05). However, there were no causal genetic relationships between AAMA and MON (OR = 1.132 [95%CI: 0.621-2.063], P = 0.685), AAMO and BON (OR = 0.989 [95%CI: 0.755-1.296], P = 0.935), or AAMO and MON (OR = 1.129 [95%CI: 0.938-1.359], P = 0.200). The MR Egger, weighted median, simple mode, weighted mode, maximum likelihood, penalized weighted median, and IVW (fixed effects) were consistent with a random-effects IVW (P > 0.05). MR analysis results showed no heterogeneity, the horizontal pleiotropy and outliers (P > 0.05). They were not driven by a single SNP, and were normally distributed (P > 0.05).
Only AAMA has a negative genetic causal relationship with BON, and no genetic causal relationships exist between AAMA and MON, AAMO and BON, or AAMO and MON. However, it cannot be ruled out that they are related at other levels besides genetics.
Su Y
,Hu Y
,Xu Y
,Yang M
,Wu F
,Peng Y
... -
《Frontiers in Endocrinology》
Two-sample Mendelian randomization to study the causal association between gut microbiota and atherosclerosis.
According to some recent observational studies, the gut microbiota influences atherosclerosis via the gut microbiota-artery axis. However, the causal role of the gut microbiota in atherosclerosis remains unclear. Therefore, we used a Mendelian randomization (MR) strategy to try to dissect this causative link.
The biggest known genome-wide association study (GWAS) (n = 13,266) from the MiBioGen collaboration was used to provide summary data on the gut microbiota for a two-sample MR research. Data on atherosclerosis were obtained from publicly available GWAS data from the FinnGen consortium, including cerebral atherosclerosis (104 cases and 218,688 controls), coronary atherosclerosis (23,363 cases and 187,840 controls), and peripheral atherosclerosis (6631 cases and 162,201 controls). The causal link between gut microbiota and atherosclerosis was investigated using inverse variance weighting, MR-Egger, weighted median, weighted mode, and simple mode approaches, among which inverse variance weighting was the main research method. Cochran's Q statistic was used to quantify the heterogeneity of instrumental variables (IVs), and the MR Egger intercept test was used to assess the pleiotropy of IVs.
Inverse-variance-weighted (IVW) estimation showed that genus Ruminiclostridium 9 had a protective influence on cerebral atherosclerosis (OR = 0.10, 95% CI: 0.01-0.67, P = 0.018), while family Rikenellaceae (OR = 5.39, 95% CI: 1.50-19.37, P = 0.010), family Streptococcaceae (OR = 6.87, 95% CI: 1.60-29.49, P = 0.010), genus Paraprevotella (OR = 2.88, 95% CI: 1.18-7.05, P = 0.021), and genus Streptococcus (OR = 5.26, 95% CI: 1.28-21.61, P = 0.021) had pathogenic effects on cerebral atherosclerosis. For family Acidaminococcaceae (OR = 0.87, 95% CI: 0.76-0.99, P = 0.039), the genus Desulfovibrio (OR = 0.89, 95% CI: 0.80-1.00, P = 0.048), the genus RuminococcaceaeUCG010 (OR = 0.80, 95% CI: 0.69-0.94, P = 0.006), and the Firmicutes phyla (OR = 0.87, 95% CI: 0.77-0.98, P = 0.023) were protective against coronary atherosclerosis. However, the genus Catenibacterium (OR = 1.12, 95% CI: 1.00-1.24, P = 0.049) had a pathogenic effect on coronary atherosclerosis. Finally, class Actinobacteria (OR = 0.83, 95% CI: 0.69-0.99, P = 0.036), family Acidaminococcaceae (OR = 0.76, 95% CI: 0.61-0.94, P = 0.013), genus Coprococcus2 (OR = 0.76, 95% CI: 0.60-0.96, P = 0.022), and genus RuminococcaceaeUCG010 (OR = 0.65, 95% CI: 0.46-0.92, P = 0.013), these four microbiota have a protective effect on peripheral atherosclerosis. However, for the genus Lachnoclostridium (OR = 1.25, 95% CI: 1.01-1.56, P = 0.040) and the genus LachnospiraceaeUCG001 (OR = 1.22, 95% CI: 1.04-1.42, P = 0.016), there is a pathogenic role for peripheral atherosclerosis. No heterogeneity was found for instrumental variables, and no considerable horizontal pleiotropy was observed.
We discovered that the presence of probiotics and pathogens in the host is causally associated with atherosclerosis, and atherosclerosis at different sites is causally linked to specific gut microbiota. The specific gut microbiota associated with atherosclerosis identified by Mendelian randomization studies provides precise clinical targets for the treatment of atherosclerosis. In the future, we can further examine the gut microbiota's therapeutic potential for atherosclerosis if we have a better grasp of the causal relationship between it and atherosclerosis.
Jiang S
,Yu C
,Lv B
,He S
,Zheng Y
,Yang W
,Wang B
,Li D
,Lin J
... -
《Frontiers in Immunology》
Genetic causal relationship between gut microbiota and basal cell carcinoma: A two-sample mendelian randomization study.
Research has previously established connections between the intestinal microbiome and the progression of some cancers. However, there is a noticeable gap in the literature in regard to using Mendelian randomisation (MR) to delve into potential causal relationships between the gut microbiota (GM) and basal cell carcinoma (BCC). Therefore, the purpose of our study was to use MR to explore the causal relationship between four kinds of GM (Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae) and BCC.
We used genome-wide association study (GWAS) data and MR to explore the causal relationship between four kinds of GM and BCC. This study primarily employed the random effect inverse variance weighted (IVW) model for analysis, as complemented by additional methods including the simple mode, weighted median, weighted mode and MR‒Egger methods. We used heterogeneity and horizontal multiplicity to judge the reliability of each analysis. MR-PRESSO was mainly used to detect and correct outliers.
The random-effects IVW results showed that Bacteroides (OR = 0.936, 95% CI = 0.787-1.113, p = 0.455), Streptococcus (OR = 0.974, 95% CI = 0.875-1.083, p = 0.629), Proteobacteria (OR = 1.113, 95% CI = 0.977-1.267, p = 0.106) and Lachnospiraceae (OR = 1.027, 95% CI = 0.899-1.173, p = 0.688) had no genetic causal relationship with BCC. All analyses revealed no horizontal pleiotropy, heterogeneity or outliers.
We found that Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae do not increase the incidence of BCC at the genetic level, which provides new insight for the study of GM and BCC.
Luo P
,Gao D
,Zhang Q
《-》
Gut microbiota and risk of ankylosing spondylitis.
Observational studies have established a connection between gut microbiota and ankylosing spondylitis (AS) risk; however, whether the observed associations are causal remains unclear. Therefore, we conducted a two-sample Mendelian randomization (MR) analysis to assess the potential causal associations of gut microbiota with AS risk.
Instrumental variants of gut microbiota were obtained from the MiBioGen consortium (n = 18,340) and the Dutch Microbiome Project (n = 7738). The FinnGen consortium provided genetic association summary statistics for AS, encompassing 2860 cases and 270,964 controls. We used the inverse-variance weighted (IVW) method as the primary analysis, supplemented with the weighted median method, maximum likelihood-based method, MR pleiotropy residual sum and outlier test, and MR-Egger regression. In addition, we conducted a reverse MR analysis to assess the likelihood of reverse causality.
After the Bonferroni correction, species Bacteroides vulgatus remained statistically significantly associated with AS risk (odds ratio (OR) 1.55, 95% confidence interval (CI) 1.22-1.95, P = 2.55 × 10-4). Suggestive evidence of associations of eleven bacterial traits with AS risk was also observed (P < 0.05 by IVW). Among them, eight were associated with an elevated AS risk (OR 1.37, 95% CI 1.07-1.74, P = 0.011 for phylum Verrucomicrobia; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for class Verrucomicrobiae; OR 1.17, 95% CI 1.01-1.36, P = 0.035 for order Bacillales; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for order Verrucomicrobiales; OR 1.43, 95% CI 1.13-1.82, P = 0.003 for family Alcaligenaceae; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for family Verrucomicrobiaceae; OR 1.31, 95% CI 1.03-1.65, P = 0.026 for genus Akkermansia; OR 1.55, 95% CI 1.19-2.02, P = 0.001 for species Sutterella wadsworthensis). Three traits exhibited a negative association with AS risk (OR 0.68, 95% CI 0.53-0.88, P = 0.003 for genus Dialister; OR 0.84, 95% CI 0.72-0.97, P = 0.020 for genus Howardella; OR 0.75, 95% CI 0.59-0.97, P = 0.026 for genus Oscillospira). Consistent associations were observed when employing alternate MR methods. In the reverse MR, no statistically significant correlations were detected between AS and these bacterial traits.
Our results revealed the associations of several gut bacterial traits with AS risk, suggesting a potential causal role of gut microbiota in AS development. Nevertheless, additional research is required to clarify the mechanisms by which these bacteria influence AS risk. Key Points • The association of gut microbiota with AS risk in observational studies is unclear. • This MR analysis revealed associations of 12 gut bacterial traits with AS risk.
Jiang X
,Wang M
,Liu B
,Yang H
,Ren J
,Chen S
,Ye D
,Yang S
,Mao Y
... -
《-》