A Necroptosis-Related Gene Signature to Predict the Prognosis of Skin Cutaneous Melanoma.
The prognosis of skin cutaneous melanoma (SKCM) remains poor, and patients with SKCM show a poor response to immunotherapy. Thus, we aimed to identify necroptosis-related biomarkers, which can help predict the prognosis of SKCM and improve the effectiveness of precision medicine. Data of SKCM were obtained from The Cancer Genome Atlas (TCGA) and GEO databases. TCGA samples were classified into two clusters by consensus clustering of necroptosis-related genes. Univariate Cox and least absolute shrinkage and selection operator regression analyses led to the identification of 11 genes, which were used to construct a prognostic model. GSE65904 was used as the test set. Principal component, t-distributed stochastic neighbor embedding, and Kaplan-Meier survival analyses indicated that samples in the train and test sets could be divided into two groups, with the high-risk group showing a worse prognosis. Univariate and multivariate Cox regression analyses were performed, and a nomogram, calibration curve, and time-dependent receiver operating characteristic curve were constructed to verify the efficacy of our model. The 1-, 3-, and 5-year areas under the receiver operating characteristic curves for the train set were 0.702, 0.663, and 0.701 and for the test set were 0.613, 0.627, and 0.637, respectively. Moreover, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses between the high- and low-risk groups. Single sample gene set enrichment analysis, immune cell infiltration analysis, tumor microenvironment scores, immune checkpoint analysis, and half-maximal inhibitory concentration prediction indicated that the high-risk group showed weaker antitumor immunity; further, the response to immune checkpoint inhibitors was worse, and the high-risk group was sensitive to fewer antitumor drugs. Tumor mutational burden analysis, Kaplan-Meier survival analysis, and correlation analysis between risk score and RNA stemness score revealed that the high-risk group with low tumor mutational burden and high RNA stemness score was potentially associated with poor prognosis. To conclude, our model, which was based on 11 necroptosis-related genes, could predict the prognosis of SKCM; in addition, it has guiding significance for the selection of clinical treatment and provides new research directions to enhance necroptosis against SKCM.
Xie Y
,Xu Z
,Mei X
,Shi W
... -
《-》
A Novel Necroptosis-Related Gene Signature in Skin Cutaneous Melanoma Prognosis and Tumor Microenvironment.
Background: Necroptosis has been identified recently as a newly recognized programmed cell death that has an impact on tumor progression and prognosis, although the necroptosis-related gene (NRGs) potential prognostic value in skin cutaneous melanoma (SKCM) has not been identified. The aim of this study was to construct a prognostic model of SKCM through NRGs in order to help SKCM patients obtain precise clinical treatment strategies. Methods: RNA sequencing data collected from The Cancer Genome Atlas (TCGA) were used to identify differentially expressed and prognostic NRGs in SKCM. Depending on 10 NRGs via the univariate Cox regression analysis usage and LASSO algorithm, the prognostic risk model had been built. It was further validated by the Gene Expression Omnibus (GEO) database. The prognostic model performance had been assessed using receiver operating characteristic (ROC) curves. We evaluated the predictive power of the prognostic model for tumor microenvironment (TME) and immunotherapy response. Results: We constructed a prognostic model based on 10 NRGs (FASLG, TLR3, ZBP1, TNFRSF1B, USP22, PLK1, GATA3, EGFR, TARDBP, and TNFRSF21) and classified patients into two high- and low-risk groups based on risk scores. The risk score was considered a predictive factor in the two risk groups regarding the Cox regression analysis. A predictive nomogram had been built for providing a more beneficial prognostic indicator for the clinic. Functional enrichment analysis showed significant enrichment of immune-related signaling pathways, a higher degree of immune cell infiltration in the low-risk group than in the high-risk group, a negative correlation between risk scores and most immune checkpoint inhibitors (ICIs), anticancer immunity steps, and a more sensitive response to immunotherapy in the low-risk group. Conclusions: This risk score signature could be applied to assess the prognosis and classify low- and high-risk SKCM patients and help make the immunotherapeutic strategy decision.
Song B
,Wu P
,Liang Z
,Wang J
,Zheng Y
,Wang Y
,Chi H
,Li Z
,Song Y
,Yin X
,Yu Z
,Song B
... -
《Frontiers in Genetics》
Necroptosis-Related lncRNAs: Predicting Prognosis and the Distinction between the Cold and Hot Tumors in Gastric Cancer.
In the face of poor prognosis and immunotherapy failure of gastric cancer (GC), this project tried to find new potential biomarkers for predicting prognosis and precision medication to ameliorate the situation.
To form synthetic matrices, we retrieved stomach adenocarcinoma transcriptome data from Genotype-Tissue Expression Project (GTEx) and The Cancer Genome Atlas (TCGA). Necroptosis-related prognostic lncRNA was identified by coexpression analysis and univariate Cox regression. Then we performed the least absolute shrinkage and selection operator (LASSO) to construct the necroptosis-related lncRNA model. Next, the Kaplan-Meier analysis, time-dependent receiver operating characteristics (ROC), univariate Cox (uni-Cox) regression, multivariate Cox (multi-Cox) regression, nomogram, and calibration curves were made to verify and evaluate the model. Gene set enrichment analyses (GSEA), principal component analysis (PCA), immune analysis, and prediction of the half-maximal inhibitory concentration (IC50) in risk groups were also analyzed. For further discussing immunotherapy between the cold and hot tumors, we divided the entire set into two clusters based on necroptosis-related lncRNAs.
We constructed a model with 16 necroptosis-related lncRNAs. In the model, we found the calibration plots showed a good concordance with the prognosis prediction. The area's 1-, 2-, and 3-year OS under the ROC curve (AUC) were 0.726, 0.763, and 0.770, respectively. Risk groups could be a guide of systemic treatment because of significantly different IC50 between risk groups. Above all, clusters could help distinguish between the cold and hot tumors effectively and contribute to precise mediation. Cluster 2 was identified as the hot tumor and more susceptible to immunotherapeutic drugs.
The results of this project supported that necroptosis-related lncRNAs could predict prognosis and help make a distinction between the cold and hot tumors for improving individual therapy in GC.
Zhao Z
,Liu H
,Zhou X
,Fang D
,Ou X
,Ye J
,Peng J
,Xu J
... -
《-》
Predicting Prognosis and Distinguishing Cold and Hot Tumors in Bladder Urothelial Carcinoma Based on Necroptosis-Associated lncRNAs.
In reference to previous studies, necroptosis played an important role in cancer development. Our team decided to explore the potential prognostic values of long non-coding RNAs (lncRNAs) associated with necroptosis in bladder urothelial carcinoma (BLCA) and their relationship with the tumor microenvironment (TME) and the immunotherapeutic response for accurate dose.
To obtain the required data, bladder urothelial carcinoma transcriptome data were searched from Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/). We used co-expression analysis, differential expression analysis, and univariate Cox regression to screen out prognostic lncRNAs associated with necroptosis in BLCA. Then the least absolute shrinkage and selection operator (LASSO) was conducted to construct the necroptosis-associated lncRNAs model. Based on this model, we also performed the Kaplan-Meier analysis and time-dependent receiver operating characteristics (ROC) to estimate the prognostic power of risk score. Multivariate and univariate Cox regression analysis were performed to build up a nomogram. Calibration curves, and time-dependent ROC were also conducted to evaluate nomogram. Principal component analysis (PCA) revealed a difference between high- and low-risk groups. In addition, we explored immune analysis, gene set enrichment analyses (GSEA), and evaluation of the half-maximal inhibitory concentration (IC50) in constructed model. Finally, the entire samples were divided into three clusters based on model of necroptosis-associated lncRNAs to further compare immunotherapy in cold and hot tumors.
A model was built up based on necroptosis-associated lncRNAs. The model revealed good consistence between calibration plots and prognostic prediction. The area of 1-, 3-, and 5-year OS under the ROC curve (AUC) were 0.707, 0.679, and 0.675. Risk groups could be helpful for systemic therapy due to the markedly diverse IC50 between risk groups. To our delight, clusters could effectively identify cold and hot tumors, which would be beneficial to accurate mediation. Clusters 2 and 3 were considered the hot tumor, which was more sensitive to immunotherapeutic drugs.
The outcomes of our study suggested that necroptosis-associated lncRNAs could effectively predict patients with BLCA prognosis, which may be helpful for distinguishing the cold and hot tumors and improving individual treatment of BLCA.
Liu D
,Xu S
,Chang T
,Ma S
,Wang K
,Sun G
,Chen S
,Xu Y
,Zhang H
... -
《Frontiers in Immunology》