-
Linggui Qihua Decoction Inhibits Atrial Fibrosis by Regulating TGF-β1/Smad2/3 Signal Pathway.
Myocardial fibrosis is a critical factor in the development of heart failure with preserved ejection fraction (HFpEF). Linggui Qihua decoction (LGQHD) is an experienced formula, which has been proven to be effective on HFpEF in clinical and in experiments. Objective. This study aimed to observe the effect of LGQHD on HFpEF and its underlying mechanism. Methods. Spontaneously hypertensive rats (SHR) were induced with high-glucose and high-fat to establish HFpEF models and were treated with LGQHD for 8 weeks. The heart structure was detected by echocardiography, and the histopathological changes of the myocardium were observed by hematoxylin-eosin (HE) and Masson staining. Reverse transcription PCR (RT-PCR) and western blot were used to detect mRNA and protein expression of the target gene in rat myocardium. Results. In this study, LGQHD improved cardiac morphology and atrial fibrosis in HfpEF rats, decreased tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA expression, up-regulated matrix metalloproteinase-9 (MMP-9) mRNA expression, and inhibited the expression of angiotensin II (Ang II), angiotensin II type 1 receptor (AT1), transforming growth factor β1 (TGF-β1), Smad2/3 mRNA, and protein in myocardial tissue of HFpEF rats. Conclusion. LGQHD can suppress atrial fibrosis in HFpEF by modulating the TGF-β1/Smad2/3 pathway.
Xiong S
,Shi Y
,Liu J
,Liu C
,Yang L
,Yang C
,Dong G
... -
《-》
-
Effects and mechanism of Compound Qidan Formula on rats with HFpEF induced by hypertension and diabetes mellitus based on Ang Ⅱ/TGF-β1/Smads signaling pathway.
Compound Qidan Formula is composed of traditional Chinese herbs and has a good curative effect in the clinical application of cardiovascular diseases such as heart failure. However, its potential molecular mechanisms of action remain highly unknown.
To observe the effect of Compound Qidan Formula on cardiac function in rats with HFpEF induced by hypertension and diabetes mellitus, and to explore its mechanism from Ang Ⅱ/TGF-β1/Smads signaling pathway.
A total of 50 SPF-grade spontaneously hypertensive rats (SHR) aged 14 weeks, fed with a high-fat and high-sucrose diet for 16 weeks, and after 2 weeks of a high-fat and high-sucrose diet, 1% streptozotocin (25 mg/kg body weight)was injected intraperitoneally to establish a rat model of HFpEF induced by hypertension and diabetes mellitus. After 8 weeks of intragastric administration, the changes in cardiac morphology and function were evaluated by echocardiography after anesthesia; the heart tissue was taken and embedded in paraffin for Masson staining, and the pathomorphological changes of left atrial tissue were observed under the optical microscope; the mRNA transcription levels of Ang Ⅱ, AT1R, TGF-β1, Smad2, Smad3, MMP-9 and TIMP-1in left atrial tissue of rats were detected by RT-PCR; and the protein expressions were detected by Western blot.
Compared with the SHR-DM group, the QD-Low and QD-High groups significantly decreased the left atrial (LA) anteroposterior diameter and interventricular septal thickness (IVST) and improved the peak velocity of mitral valve blood flow in early diastolic period (E), maximum mitral valve blood flow in systolic period (A), mitral ring myocardial movement velocity in early diastolic period (e') and E/e' ratio; the QD-High group significantly improved the E/A ratio, left atrial ejection fraction (LAEF) and left ventricular ejection fraction(LVEF). Masson staining showed that compared with the WKY group, the SHR-DM group had obvious myocardial histomorphological lesions. Compared with the SHR-DM group, the Compound Qidan Formula groups significantly improved cardiomyocyte hypertrophy and disordered arrangement and inhibited myocardial fibrosis; the mRNA expression levels of Ang Ⅱ, AT1R, TGF-β1, Smad2, Smad3, and MMP-9 in myocardial tissue of Compound Qidan Formula groups were significantly decreased, and the mRNA expression level of TIMP-1 was significantly increased. The protein expression levels of Ang Ⅱ, TGF-β1, P-Smad2/3, and MMP-9 were significantly decreased.
Compound Qidan Formula, composed of traditional Chinese herbs, can significantly improve cardiac function, improve atrial and ventricular remodeling, and prevent myocardial fibrosis and hypertrophy in rats with HFpEF induced by hypertension and diabetes mellitus. The mechanism may be related to regulating the Ang Ⅱ/TGF-β1/Smad2/3 signaling pathway.
Yuan P
,Liu J
,Xiong S
,Yang L
,Guan J
,Dong G
,Shi D
... -
《-》
-
Linggui Zhugan Decoction () Inhibits Ventricular Remodeling after Acute Myocardial Infarction in Mice by Suppressing TGF-β(1)/Smad Signaling Pathway.
Wang L
,Shi H
,Huang JL
,Xu S
,Liu PP
... -
《-》
-
Ling-Gui-Qi-Hua formula alleviates left ventricular myocardial fibrosis in rats with heart failure with preserved ejection fraction by blocking the transforming growth factor-β1 /Smads signaling pathway.
Ling-Qui-Qi-Hua (LGQH) decoction, composed of Poria cocos (Schw.) Wolf, Cinnamomum cassia (L.) J. Presl, Paeonia veitchii Lynch, and Atractylodes macrocephala Koidz., is a compound formula derived from Ling-Gui-Zhu-Gan decoction recorded in the Treatise on Febrile and Miscellaneous. It has shown cardioprotective effects on patients or rats with heart failure with preserved ejection fraction (HFpEF). Nevertheless, the active ingredients of LGQH and its anti-fibrotic mechanism remain unknown.
To determine the active ingredients in LGQH decoction and verify that LGQH decoction may inhibit left ventricular (LV) myocardial fibrosis in HFpEF rats by blocking the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway from the perspective of animal experiments.
First, liquid chromatography-mass spectrometry (LC-MS) technology was used to identify active components in the LGQH decoction. Secondly, a rat model of the metabolic syndrome-associated HFpEF phenotype was established and subsequently received LGQH intervention. The mRNA and protein expression of targets in the TGF-β1/Smads pathway were detected by quantitative real-time polymerase chain reaction and western blot analysis. Finally, molecular docking was conducted to examine the interactions between the active ingredients in the LGQH decoction and key proteins of the TGF-β1/Smads pathways.
According to LC-MS analysis, the LGQH decoction contained 13 active ingredients. In animal experiments, LGQH attenuated LV hypertrophy, enlargement, and diastolic function in HEpEF rats. Mechanically, LGQH not only down-regulated TGF-β1, Smad2, Smad3, Smad4, α-SMA, Coll I, and Coll III mRNA expressions and TGF-β1, Smad2, Smad3, P-Smad2/Smad3, Smad4, α-SMA, and Coll I protein expressions, but also up-regulated Smad7 mRNA and protein expressions, which ultimately led to myocardial fibrosis. Furthermore, molecular docking confirmed that 13 active ingredients in the LGQH decoction have excellent binding activities to the critical targets of the TGF-β1/Smads pathway.
LGQH is a modified herbal formulation with multiple active ingredients. It might alleviate LV remodeling and diastolic dysfunction and inhibit LV myocardial fibrosis by blocking TGF-β1/Smads pathways in HFpEF rats.
Shi Y
,Liu C
,Xiong S
,Yang L
,Yang C
,Qiao W
,Liu Y
,Liu S
,Liu J
,Dong G
... -
《-》
-
Upregulation of Transient Receptor Potential Canonical Type 3 Channel via AT1R/TGF-β1/Smad2/3 Induces Atrial Fibrosis in Aging and Spontaneously Hypertensive Rats.
Fibroblast proliferation and migration are central in atrial fibrillation (AF) promoting structure remodeling, which is strongly associated with aging and hypertension. Transient receptor potential canonical-3 channel (TRPC3) is a key mediator of cardiac fibrosis and the pathogenesis of AF. Here, we have observed the increased TRPC3 expression that induced atrial fibrosis which possibly is either mediated by the aging process or related to hypertensive progression. In this study, we measured the pathological structure remodeling by H&E staining, Masson staining, and transmission electron microscope (TEM). The protein expression levels of fibrotic biomarkers and TRPC3 were measured by Western blotting with atrial tissues from normotensive Wistar Kyoto rats (WKY 4m-o (4 months old)), old WKY (WKY 24m-o (24 months old)), spontaneously hypertensive rat (SHR 4m-o (4 months old)), and old SHR (SHR 24m-o (24 months old)). To illuminate the molecular mechanism of TRPC3 in atrial fibrosis of aging rats and SHR, we detected the inhibited role of TRPC3 selective blocker ethyl-1-(4-(2,3,3-trichloroacrylamide) phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate,pyrazole-3 (Pyr3) on angiotensin II (Ang II) induced fibrosis in neonatal rat atrial fibroblasts. The pathological examination showed that the extracellular matrix (ECM) and collagen fibrils were markedly increased in atrial tissues from aged and hypertensive rats. The protein expressions of fibrotic biomarkers (collagen I, collagen III, and transforming growth factor-β1 (TGF-β1)) were significantly upregulated in atrial tissues from the WKY 24m-o group, SHR 4m-o group, and SHR 24m-o group compared with the WKY 4m-o group. Meanwhile, the expression level of TRPC3 was significantly upregulated in WKY 24m-o and SHR 4m-o atrial tissues compared to WKY 4m-o rats. In isolated and cultured neonatal rat atrial fibroblasts, Ang II induced the atrial fibroblast migration and proliferation and upregulated the expression levels of TRPC3 and fibrotic biomarkers. TRPC3 selected blocker Pyr3 attenuated the migration and proliferation in neonatal rat atrial fibroblasts. Furthermore, Pyr3 significantly alleviated Ang II-induced upregulation of TRPC3, collagen I, collagen III, and TGF-β1 through the molecular mechanism of the TGF-β/Smad2/3 signaling pathway. Similarly, knocking down TRPC3 using short hairpin RNA (shTRPC3) also attenuated Ang II-induced upregulation of TGF-β1. Pyr3 preconditioning decreased Ang II-induced intracellular Ca2+ transient amplitude elevation. Furthermore, AT1 receptor was involved in Ang II-induced TRPC3 upregulation. Hence, upregulation of TRPC3 in aging and hypertension is involved in an atrial fibrosis process. Inhibition of TRPC3 contributes to reverse Ang II-induced fibrosis. TRPC3 may be a potential therapeutic target for preventing fibrosis in aging and hypertension.
He R
,Zhang J
,Luo D
,Yu Y
,Chen T
,Yang Y
,Yu F
,Li M
... -
《-》