-
Ethanol extract of Piper wallichii ameliorates DSS-induced ulcerative colitis in mice: Involvement of TLR4/NF-κB/COX-2 signaling pathway.
Piper wallichii (family: Piperaceae), a folk herbal medicine with anti-inflammatory and anti-thrombotic properties, has been traditionally used to treat rheumatic arthralgia, lumbocrural pain, gastrointestinal flatulence, and other intestinal diseases in China, Thailand, and India. However, there is no scientific report on the efficacy and potential mechanisms of Piper wallichii for ulcerative colitis (UC).
The study aims to investigate the therapeutic effect and possible molecular mechanisms of the ethanol extract of Piper wallichii (EEPW) on DSS-induced UC in BALB/c mice.
The main components in EEPW were characterized by UPLC-QE-Orbitrap-MS. Subsequently, the anti-inflammatory effect of EEPW in vitro was preliminarily evaluated in RAW264.7 cells stimulated with LPS. UC model mice were triggered by free access to 4% DSS aqueous solution for 12 consecutive days, and simultaneously, EEPW (25, 50, and 100 mg/kg) and tofacitinib (positive control, 30 mg/kg) were orally administrated, respectively. The therapeutic efficacy of EEPW on UC was assessed by body weight, DAI, colon length, and pathological morphology. Besides, we investigated the effects of EEPW on intestinal barrier function, inflammatory factors, and immune systems of UC mice through immunohistochemistry (IHC), flow cytometry, and other techniques. Moreover, the expression of related proteins in the TLR4/NF-κB/COX-2 pathway was analyzed by Western blot.
A total of 14 components were identified in the positive and negative modes, including isofutoquinol A (11), hancinone C (12), and futoquinol (14) which characterized by references. In the RAW264.7 cells experiments, the extract significantly suppressed the levels of TNF-α and IL-6. More importantly, EEPW distinctly improved the symptoms of DSS-induced UC mice as reflected by a significant recovery from body weight, colon length, pathological injuries of the colon, and so on. Further research found that EEPW remarkably restored the levels of occludin, promoted proliferation, and inhibited apoptosis in colon to maintain the integrity of intestinal barrier. In addition, the down-regulation of TNF-α and IL-1β in colon, Th1 and Th17 cells in spleen, as well as the up-regulation of IL-10 in colon and Th2 cells in spleen were distinctly observed in EEPW-treated groups. Furthermore, the protein expression of TLR4, p-IκB-α, p-p65, and COX-2 were significantly inhibited by EEPW.
This study confirmed for the first time that EEPW effectively ameliorated DSS-induced UC in mice, which might be related to improving intestinal barrier function, maintaining the levels of inflammatory factors, and regulating the immune system. In addition, we found that the anti-inflammatory effect of EEPW on UC mice was involved in the TLR4/NF-κB/COX-2 signaling pathway. In conclusion, Piper wallichii can be used as a candidate for the treatment of UC.
Zhao J
,Wu R
,Wei P
,Ma Z
,Pei H
,Hu J
,Wen F
,Wan L
... -
《-》
-
Fufangxiaopi formula alleviates DSS-induced colitis in mice by inhibiting inflammatory reaction, protecting intestinal barrier and regulating intestinal microecology.
Fufangxiaopi Formula (FF) is a modified form of Sishen Wan, traditionally used for treating diarrhea. The application of FF for treating ulcerative colitis (UC) has achieved desirable outcomes in clinical settings. However, the underlying mechanism of the effect of FF on UC is yet to be determined.
This study aimed to evaluate the protective effect and underlying mechanism of FF on mice with dextran sodium sulfate (DSS)-induced colitis.
In vivo, the efficacy of FF on the symptoms associated with DSS-induced colitis in mice was clarified by observing the body weight change, colon length, DAI score, and H&E staining. The release of inflammatory mediators in mouse colon tissues was detected by ELISA and MPO, and the contents of TLR4/NF-κB signaling pathway and MAPK signaling pathway-related proteins, as well as intestinal barrier-related proteins, were detected in mouse colon tissues by western blot method. Changes in the content of barrier proteins in mouse colon tissues were detected by immunofluorescence. 16S rRNA sequencing and FMT were performed to clarify the effects of FF on intestinal flora. In vitro, the effect of FF-containing serum on LPS-induced inflammatory mediator release from RAW264.7 cells were detected by qRT-PCR. The contents of TLR4/NF The effects of FF-containing serum on B signaling pathway and MAPK signaling pathway related proteins in RAW264.7 cells and intestinal barrier related proteins in Caco-2 cells were detected by western blot. The effects of FF-containing serum on LPS-induced nuclear translocation of p65 protein in RAW264.7 cells and barrier-associated protein in Caco-2 cells were detected by immunofluorescence.
In vivo studies showed that FF could significantly alleviate the symptoms of UC, including reducing colon length, weight loss, clinical score, and colon tissue injury in mice. FF could significantly reduce the secretion of proinflammatory cytokines by suppressing the activation of the TLR4/NF-κB and MAPK signaling pathways. Moreover, FF could protect the integrity of intestinal barriers by significantly increasing claudin-3, occludin, and ZO-1 expression levels. 16S rRNA sequencing and FMT elucidate that FF can alleviate symptoms associated with colitis in mice by interfering with intestinal flora. In vitro studies showed that FF drug-containing serum could significantly inhibit proinflammatory responses and attenuate the secretion of iNOS, IL-1β, TNF-α, IL-6, and COX-2 by suppressing the activation of TLR4/NF-κB and MAPK signaling pathways in RAW264.7 cells. Furthermore, FF could protect the Caco-2 cell epithelial barrier.
FF could alleviate DSS-induced colitis in mice by maintaining the intestinal barrier, inhibiting the activation of TLR4/NF-κB and MAPK signaling pathways, reducing the release of proinflammatory factors, and regulating intestinal microecology.
Liu K
,Shi C
,Yan C
,Yin Y
,Qiu L
,He S
,Chen W
,Li G
... -
《-》
-
Ganluyin ameliorates DSS-induced ulcerative colitis by inhibiting the enteric-origin LPS/TLR4/NF-κB pathway.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD), that is associated with a significantly increased risk of colon cancer. As a classic traditional Chinese medicine, Ganluyin (GLY) has a long history as an anti-inflammatory medication, but its impacts on UC has not been established.
This study aims to evaluate the protective effect and mechanism of GLY on a pathway involving enteric-origin lipopolysaccharide (LPS), toll-like receptor (TLR)4, and NF-κB in mice with dextran sulfate sodium (DSS)-induced UC.
After three weeks of intragastric administration of GLY, a UC model was induced in mice by administration of 4% DSS in drinking water for one week. The disease activity index (DAI) was measured, and histological staining was used to detect histopathological changes of colon. LPS content of the serum was measured by ELISA, and the expression of tight junction proteins and proteins related to TLR4/NF-κB pathway in colon were analyzed by immunohistochemistry or Western Blotting. The intestinal flora was analyzed by 16S rRNA sequencing.
GLY improved the histological pathological changes of DSS-induced UC, as assessed by DAI, colonic mucosal damage, inflammatory cell infiltration, and goblet cell and mucus reduction. GLY also protected the intestinal mucosal barrier by increasing the expression of the tight junction proteins, occludin, claudin-1, and ZO-1 and by reducing the serum LPS content and decreasing the expression of TLR4, MyD88, NF-κB, IL-6, IL-1β, and TNF-α proteins in colon. Analyses of the intestinal flora showed that GLY restored the homeostasis of the intestinal flora through increases in the abundance of Firmicutes and decreases in the abundance of Proteobacteria and Bacteroidetes, which is associated with the production of LPS.
GLY might exert an anti-UC effect by improving the colonic mucosal barrier and inhibiting the enteric-origin LPS/TLR4/NF-κB inflammatory pathway, and restoring the homeostasis of the intestinal flora in UC mice. These discoveries lay a strong foundation for GLY as a UC treatment.
Xiong T
,Zheng X
,Zhang K
,Wu H
,Dong Y
,Zhou F
,Cheng B
,Li L
,Xu W
,Su J
,Huang J
,Jiang Z
,Li B
,Zhang B
,Lv G
,Chen S
... -
《-》
-
Canna x generalis L.H. Bailey rhizome extract ameliorates dextran sulfate sodium-induced colitis via modulating intestinal mucosal dysfunction, oxidative stress, inflammation, and TLR4/ NF-ҡB and NLRP3 inflammasome pathways.
Genus Canna is used in folk medicine as demulcent, diaphoretic, antipyretic, mild laxative and in gastrointestinal upsets therapy. Canna x generalis (CG) L.H. Bailey is traditionally used as anti-inflammatory, analgesic and antipyretic. Besides, CG is used in Ayurvedic medicines' preparations and in the treatment of boils, wounds, and abscess. Nevertheless, its anti-inflammatory effects against ulcerative colitis (UC) are not yet investigated.
This study aimed to investigate the phytoconstituents of CG rhizome ethanol extract (CGE). Additionally, we aimed to comparatively evaluate its therapeutic effects and underlying mechanisms against the reference drug "sulphasalazine (SAS)" in dextran sodium sulfate (DSS)-induced UC in mice.
Metabolic profiling of CG rhizomes was performed via UHPLC/qTOF-HRMS; the total phenolic, flavonoid and steroid contents were determined, and the main phytoconstituents were isolated and identified. Next, DSS-induced (4%) acute UC was established in C57BL/6 mice. DSS-induced mice were administered either CGE (100 and 200 mg/kg) or SAS (200 mg/kg) for 7 days. Body weight, colon length, disease activity index (DAI) and histopathological alterations in colon tissues were examined. Colon levels of oxidative stress (GSH, MDA, SOD and catalase) and pro-inflammatory [Myeloperoxidase (MPO), nitric oxide (NO), IL-1β, IL-12, TNF-α, and INF-γ] markers were colourimetrically determined. Serum levels of lipopolysaccharide (LPS) and relative mRNA expressions of occludin, TLR4 and ASC (Apoptosis-Associated Speck-Like Protein Containing CARD) using RT-PCR were measured. Protein levels of NLRP3 inflammasome and cleaved caspase-1 were determined by Western blot. Furthermore, immunohistochemical examinations of caspase-3, NF-ҡB and claudin-1 were performed.
Major identified constituents of CGE were flavonoids, phenolic acids, phytosterols, beside five isolated phytoconstituents (β-sitosterol, triacontanol fatty alcohol, β-sitosterol-3-O-β-glucoside, rosmarinic acid, 6-O-p-coumaroyl-β-D-fructofuranosyl α-D-glucopyranoside). The percentage of the phenolic, flavonoid and steroid contents in CGE were 20.55, 6.74 and 98.09 μg of gallic acid, quercetin and β-sitosterol equivalents/mg extract, respectively. In DSS-induced mice, CGE treatment ameliorated DAI, body weight loss and colon shortening. CGE attenuated the DSS-induced colonic histopathological alternations, inflammatory cell infiltration and histological scores. CGE elevated GSH, SOD and catalase levels, and suppressed MDA, pro-inflammatory mediators (MPO and NO) as well as cytokines levels in colonic tissues. Moreover, CGE downregulated LPS/TLR4 signaling, caspase-3 and NF-ҡB expressions. CGE treatment inhibited NLRP3 signaling pathway as indicated by the suppression of the protein expression of NLRP3 and cleaved caspase-1, and the ASC mRNA expression in colonic tissues. Additionally, CGE restored tight junction proteins' (occludin and claudin-1) expressions.
Our findings provided evidence for the therapeutic potential of CGE against UC. CGE restored intestinal mucosal barrier's integrity, mitigated oxidative stress, inflammatory cascade, as well as NF-ҡB/TLR4 and NLRP3 pathways activation in colonic tissues. Notably, CGE in a dose of 200 mg/kg was more effective in ameliorating DSS-induced UC as compared to SAS at the same dose.
Mahmoud TN
,El-Maadawy WH
,Kandil ZA
,Khalil H
,El-Fiky NM
,El Alfy TSMA
... -
《-》
-
Higenamine improves DSS-induced ulcerative colitis in mice through the Galectin-3/TLR4/NF-κB pathway.
Ulcerative colitis (UC) is an inflammatory disease of the colon and tends to relapse. Higenamine (HG) has anti-inflammatory, antioxidant and anti-apoptotic activities. This study aimed to investigate the role of HG in the treatment of UC as well as the underlying mechanism. In vivo and in vitro models of UC were respectively established in dextran sodium sulfate (DSS)-induced mice and DSS-induced NCM460 cells. The weight and disease performance and disease activity index (DAI) of mice were recorded every day. The colon length was measured and pathological changes of colon tissues were observed by HE staining. The apoptosis of colon cells in mice was detected by Tunel assay and FITC-dextran was used to detect intestinal permeability in mice. The MPO activity and expression of tight junction proteins and Galectin-3/TLR4/NF-κB pathway related proteins in colon tissues and cells were detected by MPO assay kit and western blot. The levels of TNF-α, IL-1β, IL-6 and IL-10 in serum and cells, and levels of DAO and D-LA in serum were all detected by assay kits. The viability and apoptosis of NCM460 cells were analyzed by CCK-8 assay and flow cytometry analysis, and permeability of NCM460 monolayers was detected by TEER measurement. As a result, HG improved the weight, DAI, colon length and pathological changes of DSS-induced UC mice. HG alleviated DSS-induced colon inflammation, inhibited DSS-induced apoptosis of mouse colonic epithelial cells and restored the integrity of the mucosa barrier in mice. In addition, HG suppressed the Galectin-3/TLR4/NF-κB signaling pathway in DSS-induced UC mice. Similarly, HG improved viability and epithelial barrier function, and suppressed the apoptosis and inflammation of DSS-induced NCM460 cells by inhibiting the Galectin-3/TLR4/NF-κB signaling pathway. Galectin-3 overexpression could reverse the effect of HG on DSS-induced NCM460 cells. In conclusion, HG improved DSS-induced UC through the inactivation of Galectin-3/TLR4/NF-κB pathway in vivo and in vitro. AVAILABILITY OF DATA AND MATERIAL: The data are available from the corresponding author on reasonable request.
Shao XX
,Xu Y
,Xiao HY
,Hu Y
,Jiang Y
... -
《-》