Conifer-killing bark beetles locate fungal symbionts by detecting volatile fungal metabolites of host tree resin monoterpenes.

来自 PUBMED

作者:

Kandasamy DZaman RNakamura YZhao THartmann HAndersson MNHammerbacher AGershenzon J

展开

摘要:

Outbreaks of the Eurasian spruce bark beetle (Ips typographus) have decimated millions of hectares of conifer forests in Europe in recent years. The ability of these 4.0 to 5.5 mm long insects to kill mature trees over a short period has been sometimes ascribed to two main factors: (1) mass attacks on the host tree to overcome tree defenses and (2) the presence of fungal symbionts that support successful beetle development in the tree. While the role of pheromones in coordinating mass attacks has been well studied, the role of chemical communication in maintaining the fungal symbiosis is poorly understood. Previous evidence indicates that I. typographus can distinguish fungal symbionts of the genera Grosmannia, Endoconidiophora, and Ophiostoma by their de novo synthesized volatile compounds. Here, we hypothesize that the fungal symbionts of this bark beetle species metabolize spruce resin monoterpenes of the beetle's host tree, Norway spruce (Picea abies), and that the volatile products are used as cues by beetles for locating breeding sites with beneficial symbionts. We show that Grosmannia penicillata and other fungal symbionts alter the profile of spruce bark volatiles by converting the major monoterpenes into an attractive blend of oxygenated derivatives. Bornyl acetate was metabolized to camphor, and α- and β-pinene to trans-4-thujanol and other oxygenated products. Electrophysiological measurements showed that I. typographus possesses dedicated olfactory sensory neurons for oxygenated metabolites. Both camphor and trans-4-thujanol attracted beetles at specific doses in walking olfactometer experiments, and the presence of symbiotic fungi enhanced attraction of females to pheromones. Another co-occurring nonbeneficial fungus (Trichoderma sp.) also produced oxygenated monoterpenes, but these were not attractive to I. typographus. Finally, we show that colonization of fungal symbionts on spruce bark diet stimulated beetles to make tunnels into the diet. Collectively, our study suggests that the blends of oxygenated metabolites of conifer monoterpenes produced by fungal symbionts are used by walking bark beetles as attractive or repellent cues to locate breeding or feeding sites containing beneficial microbial symbionts. The oxygenated metabolites may aid beetles in assessing the presence of the fungus, the defense status of the host tree and the density of conspecifics at potential feeding and breeding sites.

收起

展开

DOI:

10.1371/journal.pbio.3001887

被引量:

25

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(196)

参考文献(69)

引证文献(25)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读