Monitoring of SARS-CoV-2 concentration and circulation of variants of concern in wastewater of Leuven, Belgium.

来自 PUBMED

作者:

Rector ABloemen MThijssen MDelang LRaymenants JThibaut JPussig BFondu LAertgeerts BVan Ranst MVan Geet CArnout JWollants E

展开

摘要:

Wastewater surveillance plays an important role in the management of the coronavirus disease 2019 (COVID-19) pandemic all over the world. Using different wastewater collection points in Leuven, we wanted to investigate the use of wastewater surveillance as an early warning system for an uprise of infections and as a tool to follow the circulation of specific variants of concern (VOCs) in particular geographic areas. Wastewater samples were collected from local neighborhood sewers and from a large regional wastewater treatment plant (WWTP) in the area of Leuven, Belgium. After virus concentration, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was quantified by real-time quantitative polymerase chain reaction (RT-qPCR) and normalized with the human fecal indicator pepper mild mottle virus (PMMoV). A combination of multiplex RT-qPCR assays was used to detect signature mutations of circulating VOCs. Fecal virus shedding of SARS-CoV-2 variants was measured in feces samples of hospitalized patients. In two residential sampling sites, a rise in wastewater SARS-CoV-2 concentration preceded peaks in positive cases. In the WWTP, viral load peaks were seen concomitant with the consecutive waves of positive cases caused by the original Wuhan SARS-CoV-2 strain and subsequent VOCs. During the Omicron BA.1 wave, the wastewater viral load increased to a lesser degree, even after normalization of SARS-CoV-2 concentration using PMMoV. This might be attributable to a lower level of fecal excretion of this variant. Circulation of SARS-CoV-2 VOCs Alpha, Delta, Omicron BA1/BA.2, and BA.4/BA.5 could be detected based on the presence of specific key mutations. The shift in variants was noticeable in the wastewater, with key mutations of two different variants being present simultaneously during the transition period. Wastewater-based surveillance is a sensitive tool to monitor SARS-CoV-2 circulation levels and VOCs in larger regions. In times of reduced test capacity, this can prove to be highly valuable. Differences in excretion levels of various SARS-CoV-2 variants should however be taken into account when using wastewater surveillance to monitor SARS-CoV-2 circulation levels in the population.

收起

展开

DOI:

10.1002/jmv.28587

被引量:

9

年份:

2023

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(595)

参考文献(0)

引证文献(9)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读