A hybrid artificial intelligence model leverages multi-centric clinical data to improve fetal heart rate pregnancy prediction across time-lapse systems.

来自 PUBMED

摘要:

Can artificial intelligence (AI) algorithms developed to assist embryologists in evaluating embryo morphokinetics be enriched with multi-centric clinical data to better predict clinical pregnancy outcome? Training algorithms on multi-centric clinical data significantly increased AUC compared to algorithms that only analyzed the time-lapse system (TLS) videos. Several AI-based algorithms have been developed to predict pregnancy, most of them based only on analysis of the time-lapse recording of embryo development. It remains unclear, however, whether considering numerous clinical features can improve the predictive performances of time-lapse based embryo evaluation. A dataset of 9986 embryos (95.60% known clinical pregnancy outcome, 32.47% frozen transfers) from 5226 patients from 14 European fertility centers (in two countries) recorded with three different TLS was used to train and validate the algorithms. A total of 31 clinical factors were collected. A separate test set (447 videos) was used to compare performances between embryologists and the algorithm. Clinical pregnancy (defined as a pregnancy leading to a fetal heartbeat) outcome was first predicted using a 3D convolutional neural network that analyzed videos of the embryonic development up to 2 or 3 days of development (33% of the database) or up to 5 or 6 days of development (67% of the database). The output video score was then fed as input alongside clinical features to a gradient boosting algorithm that generated a second score corresponding to the hybrid model. AUC was computed across 7-fold of the validation dataset for both models. These predictions were compared to those of 13 senior embryologists made on the test dataset. The average AUC of the hybrid model across all 7-fold was significantly higher than that of the video model (0.727 versus 0.684, respectively, P = 0.015; Wilcoxon test). A SHapley Additive exPlanations (SHAP) analysis of the hybrid model showed that the six first most important features to predict pregnancy were morphokinetics of the embryo (video score), oocyte age, total gonadotrophin dose intake, number of embryos generated, number of oocytes retrieved, and endometrium thickness. The hybrid model was shown to be superior to embryologists with respect to different metrics, including the balanced accuracy (P ≤ 0.003; Wilcoxon test). The likelihood of pregnancy was linearly linked to the hybrid score, with increasing odds ratio (maximum P-value = 0.001), demonstrating the ranking capacity of the model. Training individual hybrid models did not improve predictive performance. A clinic hold-out experiment was conducted and resulted in AUCs ranging between 0.63 and 0.73. Performance of the hybrid model did not vary between TLS or between subgroups of embryos transferred at different days of embryonic development. The hybrid model did fare better for patients older than 35 years (P < 0.001; Mann-Whitney test), and for fresh transfers (P < 0.001; Mann-Whitney test). Participant centers were located in two countries, thus limiting the generalization of our conclusion to wider subpopulations of patients. Not all clinical features were available for all embryos, thus limiting the performances of the hybrid model in some instances. Our study suggests that considering clinical data improves pregnancy predictive performances and that there is no need to retrain algorithms at the clinic level unless they follow strikingly different practices. This study characterizes a versatile AI algorithm with similar performance on different time-lapse microscopes and on embryos transferred at different development stages. It can also help with patients of different ages and protocols used but with varying performances, presumably because the task of predicting fetal heartbeat becomes more or less hard depending on the clinical context. This AI model can be made widely available and can help embryologists in a wide range of clinical scenarios to standardize their practices. Funding for the study was provided by ImVitro with grant funding received in part from BPIFrance (Bourse French Tech Emergence (DOS0106572/00), Paris Innovation Amorçage (DOS0132841/00), and Aide au Développement DeepTech (DOS0152872/00)). A.B.-C. is a co-owner of, and holds stocks in, ImVitro SAS. A.B.-C. and F.D.M. hold a patent for 'Devices and processes for machine learning prediction of in vitro fertilization' (EP20305914.2). A.D., N.D., M.M.F., and F.D.M. are or have been employees of ImVitro and have been granted stock options. X.P.-V. has been paid as a consultant to ImVitro and has been granted stocks options of ImVitro. L.C.-D. and C.G.-S. have undertaken paid consultancy for ImVitro SAS. The remaining authors have no conflicts to declare. N/A.

收起

展开

DOI:

10.1093/humrep/dead023

被引量:

8

年份:

2023

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(959)

参考文献(43)

引证文献(8)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读