AMMI and GGE biplot analysis of yield under terminal heat tolerance in wheat.

来自 PUBMED

作者:

Gupta VMehta GKumar SRamadas STiwari RSingh GPSharma P

展开

摘要:

Wheat is an important cereal crop that helps to meet the food grain needs of people all over the world. Heat stress is one of the most significant abiotic stresses that wheat crops face during terminal growth stages in the wheat growing regions like India. It is very important to identify heat tolerant genotypes to be used as donors for breeding tolerant varieties. Thirty-six wheat genotypes were evaluated under different sowing dates viz., Timely sown (TS), Late sown (LS) and very late sown (VLS), and the fourth was sown in the Temperature controlled phenotyping facility (TCPF) across two years. Genotypes were planted following lattice square design with two replications. Data was recorded for yield and yield contributing traits and analysed using selection indices as well AMMI and GGE biplot stability models. Heat stress affected all the traits under different heat environments which ranged from 1.6% (Spikelet number) to 37.2% (grain yield). Regression analysis indicated that the thousand grains weight (R2 = 0.50) contributed significantly towards grain yield under heat stress. Stress susceptibility index (SSI) found genotypes GW322, RAJ3765, Raj4037and MACS6145 as heat tolerant whereas, Stress Tolerance Index (STI) identified C306, HD2967, WH1080, WH730, DBW90, HD2932, DBW17, RAJ3765 as heat tolerant and high yielding. AMMI biplot analysis indicated stable genotypes DBW90, WH730, RAJ4083, CBW38, HD2932, NI5439, WR544, whereas GGE biplot analysis revealed stable genotypes NIAW34, NI5439, RAJ4083, DBW90, PBW590, Raj3765, HUW 510, WH730, HD2967 and UP2382. Heat stress affects significantly all yield contributing traits. Thousand grain weight was the most important trait that can be used as a selection criterion for selecting tolerant lines. Based on selection indices and both AMMI and GGE analysis, genotype RAJ3765 was identified to be highly heat tolerant with good grain yield.

收起

展开

DOI:

10.1007/s11033-023-08298-4

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(287)

参考文献(3)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读