Ocean oil spill detection from SAR images based on multi-channel deep learning semantic segmentation.

来自 PUBMED

摘要:

One of the major threats to marine ecosystems is pollution, particularly, that associated with the offshore oil and gas industry. Oil spills occur in the world's oceans every day, either as large-scale spews from drilling-rig or tanker accidents, or as smaller discharges from all sorts of sea-going vessels. In order to contribute to the timely detection and monitoring of oil spills over the oceans, we propose a new Multi-channel Deep Neural Network (M-DNN) segmentation model and a new and effective Synthetic Aperture Radar (SAR) image dataset, that enable us to emit forewarnings in a prompt and reliable manner. Our proposed M-DNN is a pixel-level segmentation model intended to improve previous DNN oil-spill detection models, by taking into account multiple input channels, complex oil shapes at different scales (dimensions) and evolution in time, and look-alikes from low wind speed conditions. Our methodology consists of the following components: 1) New Multi-channel SAR Image Database Development; 2) Multi-Channel DNN Model based on U-net and ResNet; and 3) Multi-channel DNN Training and Transfer Learning. Due to the lack of public oil spill databases guaranteeing a correct learning process of the M-DNN, we developed our own database consisting of 16 ENVISAT-ASAR images acquired over the Gulf of Mexico during the Deepwater Horizon (DWH) blowout, off the west coast of South Korea during the Hebei Spirit oil tanker collision, and over the Black Sea. These images were pre-processed to create a 3-channel input image IM = {IO, IW, IV}, to feed in and train our M-DNN. The first channel IO represents the radiometric values of the original SAR Images, the second and third channels are derived from IO; in particular, IW represents the output of the wind speed estimation using CMOD5 algorithm (Hersbach et al., 2003) and IV represents the variance of IO that incorporates texture information and at the same time encapsulates oil spill transition regions. IM channels were split and linearly transformed for data augmentation (rotation and reflection) to obtain a total of 80,772 sub-images of 224 × 224 pixels. From the entire database, 80 % of the sub-images were used in the DNN training process, the remaining (20 %) was used for testing our final architecture. Our experimental results show higher pixel-level classification accuracy when 2 or 3 channels are used in the M-DNN, reaching an accuracy of 98.56 % (the highest score reported in the literature for DNN models). Additionally, our M-DNN model provides fast training convergence rate (about 14 times better on the average than previous works), which proves the effectiveness of our proposed method. According to our knowledge, our work is the first multi-channel DNN based scheme for the classification of oil spills at different scales.

收起

展开

DOI:

10.1016/j.marpolbul.2023.114651

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(414)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读