Acquired EML4-ALK fusion and EGFR C797S in cis mutation as resistance mechanisms to osimertinib in a non-small cell lung cancer patient with EGFR L858R/T790M.

来自 PUBMED

作者:

Wang LSChen SQZhong XJiao XDLiu KQin BDWu YLing YDuan XPZang YS

展开

摘要:

The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) dramatically improve the clinical outcomes of non-small cell lung cancer (NSCLC) patients harboring EGFR -sensitive mutations. Despite the remarkable efficacy of first-and second-generation EGFR TKIs, disease relapse is inevitable. EGFR T790M mutation is a primary contributor to the acquired resistance to first- and second-generation EGFR TKIs. Osimertinib, which is an irreversible third-generation EGFR TKI, was designed for EGFR -activating mutations as well as the EGFR T790M mutation in patients with advanced NSCLC and has demonstrated a convincing efficacy. However, acquired resistance to osimertinib after treatment inevitably occurs. The acquired resistance mechanisms to osimertinib are highly complicated and not fully understood, encompassing EGFR -dependent as well as EGFR -independent mechanisms. Treatment approaches for patients progressing from osimertinib have not been established. We present a case of a stage IV lung adenocarcinoma patient harboring EGFR L858R, acquired T790M after treatment with first-line gefitinib. She then acquired a new EML4-ALK gene fusion after treatment with osimertinib. A combination targeted therapy of osimertinib plus alectinib was initiated, with a progression-free survival of 5 months without any serious adverse reaction. After disease progression, EGFR C797S in cis was detected with a loss of the EML4-ALK fusion by targeted next-generation sequencing. Then therapy was changed to pemetrexed combined with bevacizumab plus camrelizumab, but no obvious effect was observed. The patient had achieved an overall survival of 31 months. As far as we know, this was the first reported case that an EGFR -mutant NSCLC patient-acquired ALK fusion mediating resistance to osimertinib, and sequential EGFR C797S mutation mediating resistance to combined targeted therapy with osimertinib and alectinib. Our case shows that EML4-ALK fusion is a rare but critical resistance mechanism to osimertinib, and C797S mutation in cis may be an underlying mechanism of acquired resistance mutation in double TKIs therapy. Furthermore, molecular detection and rebiopsy play important roles in the selection of therapeutic strategies when the disease progresses.

收起

展开

DOI:

10.1097/CAD.0000000000001489

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(504)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读