-
Identification of immune- and autophagy-related genes and effective diagnostic biomarkers in endometriosis: a bioinformatics analysis.
To identify autophagy- and immune-related hub genes affecting the diagnosis and treatment of endometriosis.
Gene expression data were downloaded from the Gene Expression Omnibus (GEO) (GSE11691 and GSE120103 for training, and GSE7305 for validation). By overlapping the differentially expressed genes (DEGs), Weighted gene co-expression network analysis (WGCNA) module genes, and autophagy-related genes (ARGs), and immune-related genes (IRGs) separately, hub genes were identified using the least absolute shrinkage and selection operator (LASSO)and support vector machine recursive feature elimination (SVM-RFE). The hub genes were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A hub gene-prediction model was constructed and assessed using five-fold cross-validation via five supervised machine-learning algorithms: random forest, the sequential minimal optimization (SMO), K-nearest neighbours (IBK), C4.5 decision tree (J48), and logistics regression. The area under the receiver operating characteristic curve (AUC) was adopted to assess the identification ability of characteristic genes.
1,116 DEGs were obtained from the training cohort, and 22 endometriosis-related IRGs were identified by overlapping the 1,116 DEGs, 3,222 module genes, and 1,793 IRGs. Meanwhile, 45 endometriosis-related ARGs were obtained (1,928 ARGs). Subsequently, nine IRG hub genes (BST2, CCL13, CD86, CSF1, FAM3C, GREM1, ISG20, PSMB8, and S100A11) and nine ARG hub genes (GSK3A, HTR2B, RAB3GAP1, ARFIP2, BNIP3, CSF1, MAOA, PPP1R13L, and SH3GLB2) were obtained by LASSO and SVM-RFE. GO analysis indicated that the ARG hub genes responded to the regulation of autophagy and mitochondrial outer membrane permeabilization, and KEGG enrichment analysis involved serotonergic and dopaminergic synapses. GO analysis also indicated that the IRG hub genes responded to the regulation of leukocyte proliferation and mononuclear cell migration, and KEGG analysis showed enrichment involved in viral protein interaction with cytokines and cytokine receptors. The AUC of the random-forest algorithm of ARGs was 0.975 in the training cohort and 0.940 in the validation cohort, and the AUC of the SMO algorithm of IRGs was 0.907 in the training cohort and 0.8 in the validation cohort.
Seventeen hub genes are closely associated with endometriosis. These genes are potential autophagy- and immune-related biomarkers for diagnosis and treatment of endometriosis.
Ji X
,Huang C
,Mao H
,Zhang Z
,Zhang X
,Yue B
,Li X
,Wu Q
... -
《-》
-
Gene expression analysis in endometriosis: Immunopathology insights, transcription factors and therapeutic targets.
Endometriosis is recognized as an estrogen-dependent inflammation disorder, estimated to affect 8%-15% of women of childbearing age. Currently, the etiology and pathogenesis of endometriosis are not completely clear. Underlying mechanism for endometriosis is still under debate and needs further exploration. The involvement of transcription factors and immune mediations may be involved in the pathophysiological process of endometriosis, but the specific mechanism remains to be explored. This study aims to investigate the underlying molecular mechanisms in endometriosis.
The gene expression profile of endometriosis was obtained from the gene expression omnibus (GEO) database. Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were applied to the endometriosis GSE7305 datasets. Cibersort and MCP-counter were used to explore the immune response gene sets, immune response pathway, and immune environment. Differentially expressed genes (DEGs) were identified and screened. Common biological pathways were being investigated using the kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Transcription factors were from The Human Transcription Factors. The least absolute shrinkage and selection operator (Lasso) model identified four differential expressions of transcription factors (AEBP1, HOXB6, KLF2, and RORB). Their diagnostic value was calculated by receiver operating characteristic (ROC) curve analysis and validated in the validation cohort (GSE11691, GSE23339). By constructing the interaction network of crucial transcription factors, weighted gene coexpression network analysis (WGCNA) was used to search for key module genes. Metascape was used for enrichment analysis of essential module genes and obtained HOXB6, KLF2. The HOXB6 and KLF2 were further verified as the only two intersection genes according to Support Vector Machine Recursive Feature Elimination (SVM-RFE) and random forest models. We constructed ceRNA (lncRNA-miRNA-mRNA) networks with four potential transcription factors. Finally, we performed molecular docking for goserelin and dienogest with four transcription factors (AEBP1, HOXB6, KLF2, and RORB) to screen potential drug targets.
Immune and metabolic pathways were enriched in GSVA and GSEA. In single sample gene set enrichment analysis (ssGSEA), most immune infiltrating cells, immune response gene sets, and immune response pathways are differentially expressed between endometriosis and non-endometriosis. Twenty-seven transcription factors were screened from differentially expressed genes. Most of the twenty-seven transcription factors were correlated with immune infiltrating cells, immune response gene sets and immune response pathways. Furthermore, Adipocyte enhancer binding protein 1 (AEBP1), Homeobox B6 (HOXB6), Kruppel Like Factor 2 (KLF2) and RAR Related Orphan Receptor B (RORB) were selected out from twenty-seven transcription factors. ROC analysis showed that the four genes had a high diagnostic value for endometriosis. In addition, KLF2 and HOXB6 were found to play particularly important roles in multiple modules (String, WGCNA, SVM-RFE, random forest) on the gene interaction network. Using the ceRNA network, we found that NEAT1 may regulate the expressions of AEBP1, HOXB6 and RORB, while X Inactive Specific Transcript (XIST) may control the expressions of HOXB6, RORB and KLF2. Finally, we found that goserelin and dienogest may be potential drugs to regulate AEBP1, HOXB6, KLF2 and RORB through molecular docking.
AEBP1, HOXB6, KLF2, and RORB may be potential biomarkers for endometriosis. Two of them, KLF2 and HOXB6, are critical molecules in the gene interaction network of endometriosis. Discovered by molecular docking, AEBP1, HOXB6, KLF2, and RORB are targets for goserelin and dienogest.
Geng R
,Huang X
,Li L
,Guo X
,Wang Q
,Zheng Y
,Guo X
... -
《Frontiers in Immunology》
-
Identification of novel mitophagy-related biomarkers for Kawasaki disease by integrated bioinformatics and machine-learning algorithms.
Kawasaki disease (KD) is a systemic vasculitis primarily affecting the coronary arteries in children. Despite growing attention to its symptoms and pathogenesis, the exact mechanisms of KD remain unclear. Mitophagy plays a critical role in inflammation regulation, however, its significance in KD has only been minimally explored. This study sought to identify crucial mitophagy-related biomarkers and their mechanisms in KD, focusing on their association with immune cells in peripheral blood.
This research used four datasets from the Gene Expression Omnibus (GEO) database that were categorized as the merged and validation datasets. Screening for differentially expressed mitophagy-related genes (DE-MRGs) was conducted, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A weighted gene co-expression network analysis (WGCNA) identified the hub module, while machine-learning algorithms [random forest-recursive feature elimination (RF-RFE) and support vector machine-recursive feature elimination (SVM-RFE)] pinpointed the hub genes. Receiver operating characteristic (ROC) curves were generated for these genes. Additionally, the CIBERSORT algorithm was used to assess the infiltration of 22 immune cell types to explore their correlations with hub genes. Interactions between transcription factors (TFs), genes, and Gene-microRNAs (miRNAs) of hub genes were mapped using the NetworkAnalyst platform. The expression difference of the hub genes was validated using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR).
Initially, 306 DE-MRGs were identified between the KD patients and healthy controls. The enrichment analysis linked these MRGs to autophagy, mitochondrial function, and inflammation. The WGCNA revealed a hub module of 47 KD-associated DE-MRGs. The machine-learning algorithms identified cytoskeleton-associated protein 4 (CKAP4) and serine-arginine protein kinase 1 (SRPK1) as critical hub genes. In the merged dataset, the area under the curve (AUC) values for CKAP4 and SRPK1 were 0.933 [95% confidence interval (CI): 0.901 to 0.964] and 0.936 (95% CI: 0.906 to 0.966), respectively, indicating high diagnostic potential. The validation dataset results corroborated these findings with AUC values of 0.872 (95% CI: 0.741 to 1.000) for CKAP4 and 0.878 (95% CI: 0.750 to 1.000) for SRPK1. The CIBERSORT analysis connected CKAP4 and SRPK1 with specific immune cells, including activated cluster of differentiation 4 (CD4) memory T cells. TFs such as MAZ, SAP30, PHF8, KDM5B, miRNAs like hsa-mir-7-5p play essential roles in regulating these hub genes. The qRT-PCR results confirmed the differential expression of these genes between the KD patients and healthy controls.
CKAP4 and SRPK1 emerged as promising diagnostic biomarkers for KD. These genes potentially influence the progression of KD through mitophagy regulation.
Wang Y
,Liu Y
,Wang N
,Liu Z
,Qian G
,Li X
,Huang H
,Zhuo W
,Xu L
,Zhang J
,Lv H
,Gao Y
... -
《Translational Pediatrics》
-
Identification and Analysis of Potential Immune-Related Biomarkers in Endometriosis.
Endometriosis is an inflammatory gynecological disease leading to deep pelvic pain, dyspareunia, and infertility. The pathophysiology of endometriosis is complex and depends on a variety of biological processes and pathways. Therefore, there is an urgent need to identify reliable biomarkers for early detection and accurate diagnosis to predict clinical outcomes and aid in the early intervention of endometriosis. We screened transcription factor- (TF-) immune-related gene (IRG) regulatory networks as potential biomarkers to reveal new molecular subgroups for the early diagnosis of endometriosis.
To explore potential therapeutic targets for endometriosis, the Gene Expression Omnibus (GEO), Immunology Database and Analysis Portal (ImmPort), and TF databases were used to obtain data related to the recognition of differentially expressed genes (DEGs), differentially expressed IRGs (DEIRGs), and differentially expressed TFs (DETFs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the DETFs and DEIRGs. Then, DETFs and DEIRGs were further validated in the external datasets of GSE51981 and GSE1230103. Then, we used quantitative real-time polymerase chain reaction (qRT-PCR) to verify the hub genes. Simultaneously, the Pearson correlation analysis and protein-protein interaction (PPI) analyses were used to indicate the potential mechanisms of TF-IRGs at the molecular level and obtain hub IRGs. Finally, the receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic value of the hub IRGs.
We screened a total of 94 DETFs and 121 DEIRGs in endometriosis. Most downregulated DETFs showed decreased expression in the endometria of moderate/severe endometriosis patients. The top-ranked upregulated DEIRGs were upregulated in the endometra of infertile women. Functional analysis showed that DETFs and DEIRGs may be involved in the biological behaviors and pathways of endometriosis. The TF-IRG PPI network was successfully constructed. Compared with the control group, high C3, VCAM1, ITGB2, and C3AR1 expression had statistical significance in endometriosis among the hub DEIRGs. They also showed higher sensitivity and specificity by ROC analysis for the diagnosis of endometriosis. Finally, compared with controls, C3 and VCAM1 were highly expressed in endometriosis tissue samples. In addition, they also showed high specificity and sensitivity for diagnosing endometriosis.
Overall, we discovered the TF-IRG regulatory network and analyzed 4 hub IRGs that were closely related to endometriosis, which contributes to the diagnosis of endometriosis. Additionally, we verified that DETFs or DEIRGs were associated with the clinicopathological features of endometriosis, and external datasets also confirmed the hub IRGs. Finally, C3 and VCAM1 were highly expressed in endometriosis tissue samples compared with controls and may be potential biomarkers of endometriosis, which are helpful for the early diagnosis of endometriosis.
He Y
,Li J
,Qu Y
,Sun L
,Zhao X
,Wu H
,Zhang G
... -
《-》
-
Identification of novel biomarkers and immune infiltration characteristics of ischemic stroke based on comprehensive bioinformatic analysis and machine learning.
Ischemic stroke (IS) is one of most common causes of disability in adults worldwide. However, there is still a lack of effective and reliable diagnostic markers and therapeutic targets in IS. Furthermore, immune cell dysfunction plays an important role in the pathogenesis of IS. Hence, in-depth research on immune-related targets in progressive IS is urgently needed.
Expression profile data from patients with IS were downloaded from the Gene Expression Omnibus (GEO) database. Then, differential expression analysis and weighted gene coexpression network analysis (WGCNA) were performed to identify the significant modules and differentially expressed genes (DEGs). Key genes were obtained and used in functional enrichment analyses by overlapping module genes and DEGs. Next, hub candidate genes were identified by utilizing three machine learning algorithms: least absolute shrinkage and selection operator (LASSO), random forest, and support vector machine-recursive feature elimination (SVM-RFE). Subsequently, a diagnostic model was constructed based on the hub genes, and receiver operating characteristic (ROC) curves were constructed to validate the performances of the predictive models and candidate genes. Finally, the immune cell infiltration landscape of IS was explored with the CIBERSORT deconvolution algorithm.
A total of 40 key DEGs were identified based on the intersection of the DEGs and module genes, and we found that these genes were mainly enriched in the regulation of lipolysis in adipocytes, neutrophil extracellular trap formation and complement and coagulation cascades. Based on the results from three advanced machine learning algorithms, we obtained 7 hub candidate genes (ABCA1, ARG1, C5AR1, CKAP4, HMFN0839, SDCBP and TLN1) as diagnostic biomarkers of IS and developed a reliable nomogram with high predictive performance (AUC = 0.987). In addition, immune cell infiltration dysregulation was implicated in IS, and compared with those in the normal group, IS patients had increased fractions of gamma delta T cells, monocytes, M0 macrophages, M2 macrophages and neutrophils and clearly lower percentages of naive B cells, CD8 T cells, CD4+ memory T cells, follicular helper T cells, regulatory T cells (Tregs) and resting dendritic cells. Furthermore, correlation analysis indicated a significant correlation between the hub genes and immune cells in progressive IS.
In conclusion, our study identified 7 hub genes as diagnostic biomarkers and established a reliable model to predict the occurrence of IS. Meanwhile, we explored the immune cell infiltration pattern and investigated the relationship between candidate genes and immune cells in the pathogenesis of IS. Hence, our study provides new insights into the diagnosis and treatment of IS.
Hu S
,Cai J
,Chen S
,Wang Y
,Ren L
... -
《-》