The prediction of in-hospital mortality in chronic kidney disease patients with coronary artery disease using machine learning models.
Chronic kidney disease (CKD) patients with coronary artery disease (CAD) in the intensive care unit (ICU) have higher in-hospital mortality and poorer prognosis than patients with either single condition. The objective of this study is to develop a novel model that can predict the in-hospital mortality of that kind of patient in the ICU using machine learning methods.
Data of CKD patients with CAD were extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Boruta algorithm was conducted for the feature selection process. Eight machine learning algorithms, such as logistic regression (LR), random forest (RF), Decision Tree, K-nearest neighbors (KNN), Gradient Boosting Decision Tree Machine (GBDT), Support Vector Machine (SVM), Neural Network (NN), and Extreme Gradient Boosting (XGBoost), were conducted to construct the predictive model for in-hospital mortality and performance was evaluated by average precision (AP) and area under the receiver operating characteristic curve (AUC). Shapley Additive Explanations (SHAP) algorithm was applied to explain the model visually. Moreover, data from the Telehealth Intensive Care Unit Collaborative Research Database (eICU-CRD) were acquired as an external validation set.
3590 and 1657 CKD patients with CAD were acquired from MIMIC-IV and eICU-CRD databases, respectively. A total of 78 variables were selected for the machine learning model development process. Comparatively, GBDT had the highest predictive performance according to the results of AUC (0.946) and AP (0.778). The SHAP method reveals the top 20 factors based on the importance ranking. In addition, GBDT had good predictive value and a certain degree of clinical value in the external validation according to the AUC (0.865), AP (0.672), decision curve analysis, and calibration curve.
Machine learning algorithms, especially GBDT, can be reliable tools for accurately predicting the in-hospital mortality risk for CKD patients with CAD in the ICU. This contributed to providing optimal resource allocation and reducing in-hospital mortality by tailoring precise management and implementation of early interventions.
Ye Z
,An S
,Gao Y
,Xie E
,Zhao X
,Guo Z
,Li Y
,Shen N
,Ren J
,Zheng J
... -
《-》
Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV an
Heart failure (HF) combined with hypertension is an extremely important cause of in-hospital mortality, especially for the intensive care unit (ICU) patients. However, under intense working pressure, the medical staff are easily overwhelmed by the large number of clinical signals generated in the ICU, which may lead to treatment delay, sub-optimal care, or even wrong clinical decisions. Individual risk stratification is an essential strategy for managing ICU patients with HF combined with hypertension. Artificial intelligence, especially machine learning (ML), can develop superior models to predict the prognosis of these patients. This study aimed to develop a machine learning method to predict the 28-day mortality for ICU patients with HF combined with hypertension.
We enrolled all critically ill patients with HF combined with hypertension in the Medical Information Mart for IntensiveCare Database-IV (MIMIC-IV, v.1.4) and the eICU Collaborative Research Database (eICU-CRD) from 2008 to 2019. Subsequently, MIMIC-IV was divided into training cohort and testing cohort in an 8:2 ratio, and eICU-CRD was designated as the external validation cohort. The least absolute shrinkage and selection operator (LASSO) Cox regression with internal tenfold cross-validation was used for data dimension reduction and identifying the most valuable predictive features for 28-day mortality. Based on its accuracy and area under the curve (AUC), the best model in the validation cohort was selected. In addition, we utilized the Shapley Additive Explanations (SHAP) method to highlight the importance of model features, analyze the impact of individual features on model output, and visualize an individual's Shapley values.
A total of 3,458 and 6582 patients with HF combined with hypertension in MIMIC-IV and eICU-CRD were included. The patients, including 1,756 males, had a median (Q1, Q3) age of 75 (65, 84) years. After selection, 22 out of a total of 58 clinical parameters were extracted to develop the machine-learning models. Among four constructed models, the Neural Networks (NN) model performed the best predictive performance with an AUC of 0.764 and 0.674 in the test cohort and external validation cohort, respectively. In addition, a simplified model including seven variables was built based on NN, which also had good predictive performance (AUC: 0.741). Feature importance analysis showed that age, mechanical ventilation (MECHVENT), chloride, bun, anion gap, paraplegia, rdw (RDW), hyperlipidemia, peripheral capillary oxygen saturation (SpO2), respiratory rate, cerebrovascular disease, heart rate, white blood cell (WBC), international normalized ratio (INR), mean corpuscular hemoglobin concentration (MCHC), glucose, AIDS, mean corpuscular volume (MCV), N-terminal pro-brain natriuretic peptide (Npro. BNP), calcium, renal replacement therapy (RRT), and partial thromboplastin time (PTT) were the top 22 features of the NN model with the greatest impact. Finally, after hyperparameter optimization, SHAP plots were employed to make the NN-based model interpretable with an analytical description of how the constructed model visualizes the prediction of death.
We developed a predictive model to predict the 28-day mortality for ICU patients with HF combined with hypertension, which proved superior to the traditional logistic regression analysis. The SHAP method enables machine learning models to be more interpretable, thereby helping clinicians to better understand the reasoning behind the outcome and assess in-hospital outcomes for critically ill patients.
Peng S
,Huang J
,Liu X
,Deng J
,Sun C
,Tang J
,Chen H
,Cao W
,Wang W
,Duan X
,Luo X
,Peng S
... -
《Frontiers in Cardiovascular Medicine》
Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.
The in-hospital mortality in lung cancer patients admitted to intensive care unit (ICU) is extremely high. This study intended to adopt machine learning algorithm models to predict in-hospital mortality of critically ill lung cancer for providing relative information in clinical decision-making.
Data were extracted from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) for a training cohort and data extracted from the Medical Information Mart for eICU Collaborative Research Database (eICU-CRD) database for a validation cohort. Logistic regression, random forest, decision tree, light gradient boosting machine (LightGBM), eXtreme gradient boosting (XGBoost), and an ensemble (random forest+LightGBM+XGBoost) model were used for prediction of in-hospital mortality and important feature extraction. The AUC (area under receiver operating curve), accuracy, F1 score and recall were used to evaluate the predictive performance of each model. Shapley Additive exPlanations (SHAP) values were calculated to evaluate feature importance of each feature.
Overall, there were 653 (24.8%) in-hospital mortality in the training cohort, and 523 (21.7%) in-hospital mortality in the validation cohort. Among the six machine learning models, the ensemble model achieved the best performance. The top 5 most influential features were the sequential organ failure assessment (SOFA) score, albumin, the oxford acute severity of illness score (OASIS) score, anion gap and bilirubin in random forest and XGBoost model. The SHAP summary plot was used to illustrate the positive or negative effects of the top 15 features attributed to the XGBoost model.
The ensemble model performed best and might be applied to forecast in-hospital mortality of critically ill lung cancer patients, and the SOFA score was the most important feature in all models. These results might offer valuable and significant reference for ICU clinicians' decision-making in advance.
Huang T
,Le D
,Yuan L
,Xu S
,Peng X
... -
《PLoS One》