Mesenchymal stem cell-derived extracellular vesicles carrying miR-99b-3p restrain microglial activation and neuropathic pain by stimulating autophagy.

来自 PUBMED

作者:

Gao XGao LFKong XQZhang YNJia SMeng CY

展开

摘要:

Neuropathic pain is a complex condition that seriously affects human quality of life. This study aimed to investigate the therapeutic mechanism of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) and try to discover new targets for alleviating neuropathic pain. Extracellular vesicles were isolated and identified via ultracentrifugation. BV-2 microglial cells were stimulated with lipopolysaccharide (LPS) in the presence or absence of MSC-EVs. Further, microglial activation and neuroinflammation were evaluated by flow cytometry, RT-qPCR, and ELISA. High-throughput sequencing analysis was performed to reveal the differentially expressed (DE) miRNAs in BV-2 microglia. Autophagy-related regulators were assessed by Western blotting and Immunofluorescence staining. Chronic constriction injury (CCI) model was used to induce neuropathic pain in rats, and the mechanical withdrawal threshold (MWT) was measured. High-throughput sequencing analysis identified 17 DE miRNAs, which were mainly enriched in PI3K-AKT and mTOR signaling pathways. MSC-EVs inhibited the activation of PI3K/AKT/mTOR signaling pathway in LPS-stimulated microglia. Moreover, MSC-EVs treatment enhanced the autophagy level in activated microglia, whereas autophagy inhibitor 3-MA reversed the suppressing effects of MSC-EVs on microglial activation and neuroinflammation. The MSC-EV-mediated transfer of miR-99b-3p was verified to promote microglial autophagy, and miR-99b-3p overexpression suppressed the expression of pro-inflammatory factors in activated microglia. During in vivo studies, intrathecal injection of MSC-EVs significantly up-regulated the expression of miR-99b-3p, and alleviated mechanical allodynia caused by activated microglia in the spinal cord dorsal horn of CCI rats. Moreover, MSC-EVs treatment repaired CCI-induced autophagic impairment by stimulating autophagy in the spinal cord. Collectively, our findings demonstrated that MSC-EVs had an analgesic effect on neuropathic pain via promoting autophagy, and these antinociceptive effects were at least in part caused by MSC-EV-mediated transfer of miR-99b-3p, thereby inhibiting microglial activation and pro-inflammatory cytokines expression.

收起

展开

DOI:

10.1016/j.intimp.2023.109695

被引量:

12

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(555)

参考文献(0)

引证文献(12)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读