Transcriptome profiling Revealed the potential mechanisms of Shen Lin Bai Zhu San n-butanol extract on DSS induced Colitis in Mice and LC-MS analysis.

来自 PUBMED

作者:

Qu QLi SPDong QDu HLWang ZHMa YMGong XPDing YQZhou JChen JYLiu MJLv WJGuo SN

展开

摘要:

Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disorder in gastrointestinal tract. Shen Ling Bai Zhu San (SLBZS), which has a long history of use in Traditional Chinese Medicine (TCM), has been widely used to treat gastrointestinal diseases. The isolated fractions of TCM have also been proved to possess an important potential for treating diseases, which are due to their effective components. In this study, we examined the possibility that SLBZS and its isolated active fractions may prevent DSS-induced colitis, and investigated the potential mechanisms by regulating genetic profile of colon. Colitis mice were induced by 2.5% DSS for 7 days, and then SLBZS and different SLBZS extracts were administrated to protect the mice for 7 days. Body weight, diarrhea, bleeding in stool, colon length, spleen weight, cytokines of serum and colon and pathology of colon were assessed. The level of Ginsenoside Rg1, Re and Rb1 in different SLBZS extracts and qualitative analysis of n-butanol extract of SLBZS (S-Nb) was performed by HPLC and LC-MS, respectively. And the effects of S-Nb on the transcriptome in colitis were investigated. Our results showed that SLBZS and S-Nb significantly regained body weight, reduced DAI, splenomegaly and the length of colon and attenuated histological damage of the colon. Meanwhile, SLBZS and S-Nb markedly reduced the levels of TNF-α, IL-1β and IL-6 and increased the level of IL-10 in serum and colon. These effects may be associated with the high levels of Ginsenoside Rg1, Re and Rb1 and rich variety of compounds in S-Nb including 6 ginsenosides, glycyrrhizin, L-tryptophan, and so on. Transcriptome analysis revealed that S-Nb selectively regulated 103 differentially expressed genes (DEGs), 36 of which were changed in DSS-induced mice. And the genes of Per2, Per3, Npy and Serpina3m were closely related to colitis and also restored by S-Nb with different extent. Remarkably, these DEGs modulated the biological functions of colitis mice, including extracellular region, response to external stimulus, MAPK signaling pathway and arginine and proline metabolism. These data indicated that SLBZS and S-Nb blunted DSS-induced colitis by modulating differentially expression gene profile and biological functions based on their ginsenosides and rich compounds.

收起

展开

DOI:

10.1016/j.phymed.2023.154645

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(108)

参考文献(0)

引证文献(2)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读