Investigation of biochar amendments on odor reduction and their characteristics during food waste co-composting.

来自 PUBMED

作者:

Nguyen MKLin CHoang HGBui XTNgo HHLe VGTran HT

展开

摘要:

The odor emission such as ammonia (NH3) and hydrogen sulfide (H2S) during the composting process is a severe problem that adversely affects the environment and human health. Therefore, this study aimed to (1) evaluate the variation of physicochemical characteristics during the co-composting of food waste, and sawdust mixed biochar; (2) assess the efficiency of biochar-composting combined amendment materials for reducing odor emissions and their maturity. The raw materials including food waste (FW), straw dust (SD), and biochar (BC) were prepared and homogeneously mixed with the weight ranging from 120.0 kg to 135.8 kg with five treatments, BC0 (Control), BC1 (5 % biochar), BC2 (5 % distilled water washed biochar), BC3 (10 % biochar), BC4 (20 % biochar). Adding biochar could change physicochemical properties such as temperature, moisture, and pH during composting. The results indicated applying biochar-composting covering to minimalized NH3 and H2S aided by higher porous structure and surface functional groups. Among trials, biochar 20 % obtained the lowest NH3 (2 ppm) and H2S (3 ppm) emission on day 16 and stopping their emission on day 17. The NH3/NH4+ adsorption on large specific surface areas and highly porous micro-structure of biochar lead to reduced nitrogen losses, while nitrification (NH4+ ➔ NO2- ➔ NO3-) may also contribute to nitrogen retention. The H2S concentration decreased with increasing the biochar proportion, suggesting that biochar could reduce the H2S emission. Correlation analysis illustrated that temperature, moisture, and oxygen are the most critical factors affecting H2S and NH3 emissions (p <0.05). The physicochemical properties and seed germination index indicated that the compost was mature without phytotoxicity. These novelty findings illustrated that the biochar amendment is an effective solution to reduce odor emission and enhances the maturity of compost mixture, which is promising to approach in real-scale conditions and could apply in agricultural fields.

收起

展开

DOI:

10.1016/j.scitotenv.2022.161128

被引量:

5

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(229)

参考文献(0)

引证文献(5)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读