Genetic and phenotypic associations of mitochondrial DNA copy number, SNP, and haplogroups with growth and carcass traits in beef cattle.

来自 PUBMED

作者:

Sanglard LPSnelling WMKuehn LAThallman RMFreetly HCWheeler TLShackelford SDKing DASpangler ML

展开

摘要:

Mitochondrial DNA copy number (mtDNA CN) is heritable and easily obtained from low-pass sequencing (LPS). This study investigated the genetic correlation of mtDNA CN with growth and carcass traits in a multi-breed and crossbred beef cattle population. Blood, leucocyte, and semen samples were obtained from 2,371 animals and subjected to LPS that resulted in nuclear DNA (nuDNA) and mtDNA sequence reads. Mitochondrial DNA CN was estimated as the ratio of mtDNA to nuDNA coverages. Variant calling was performed from mtDNA, and 11 single nucleotide polymorphisms (SNP) were identified in the population. Samples were classified in taurine haplogroups. Haplogroup and mtDNA type were further classified based on the 11 segregating SNP. Growth and carcass traits were available for between 7,249 and 60,989 individuals. Associations of mtDNA CN, mtDNA haplogroups, mtDNA types, and mtDNA SNP with growth and carcass traits were estimated with univariate animal models, and genetic correlations were estimated with a bivariate animal model based on pedigree. Mitochondrial DNA CN tended (P-value ≤0.08) to be associated with birth weight and weaning weight. There was no association (P-value >0.10) between mtDNA SNP, haplogroups, or types with growth and carcass traits. Genetic correlation estimates of mtDNA CN were -0.30 ± 0.16 with birth weight, -0.31 ± 0.16 with weaning weight, -0.15 ± 0.14 with post-weaning gain, -0.11 ± 0.19 with average daily dry-matter intake, -0.04 ± 0.22 with average daily gain, -0.29 ± 0.13 with mature cow weight, -0.11 ± 0.13 with slaughter weight, -0.14 ± 0.13 with carcass weight, -0.07 ± 0.14 with carcass backfat, 0.14 ± 0.14 with carcass marbling, and -0.06 ± 0.14 with ribeye area. In conclusion, mtDNA CN was negatively correlated with most traits investigated, and the genetic correlation was stronger with growth traits than with carcass traits.

收起

展开

DOI:

10.1093/jas/skac415

被引量:

1

年份:

2023

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(265)

参考文献(25)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读