Automation: A revolutionary vision of artificial intelligence in theranostics.
摘要:
The last two decades have witnessed an extraordinary evolution of automation and artificial intelligence (AI), which has become an integral part of our daily lives. Lately, AI has also been assimilated in the field of medicine to upgrade overall healthcare system and encourage personalized treatment. Theranostics literally meaning combination of diagnosis and therapeutics, is a targeted pharmacotherapy, based on specific targeted diagnostic tests. Numerous theranostic agents/biomarkers are available which can identify the most beneficial treatment, correct dose or predict response to a medicine, thus, maximizing drug efficacy, minimizing toxicity and providing informed treatment choice. For instance, a statistics based Cluster-FLIM technology provides precise data on drug-receptor binding behavior in biological tissues using fluorescence real experimental imaging. Automated Idylla™ qPCR System is another approach in oncology to determine the EGFR mutations at initial stage as well as during the treatment and also assists the oncologist in designing the treatment protocol. Recent incorporation of automation and AI in theranostics has brought a drastic change in early detection and treatment protocols for various diseases such as cancer and diabetes. Also, it leads to quick analysis of number of diverse experimental datum with accuracy. The approach mainly uses computer algorithms to unveil relevant and significant information from clinical data, thereby assisting in making accurate, logical and pertinent decisions. This review highlights the emerging uses/role of automation and AI in theranostics, technical difficulties and focuses on its future prospects to facilitate a patient specific, reliable and efficient pharmacotherapy.
收起
展开
DOI:
10.1016/j.bulcan.2022.10.009
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(146)
参考文献(0)
引证文献(0)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无