Biogenic Synthesis of Silver Nanoparticles using Lasiosiphon eriocephalus (Decne): In vitro Assessment of their Antioxidant, Antimicrobial and Cytotoxic Activities.

来自 PUBMED

作者:

Datkhile KDDurgawale PPPatil SR

展开

摘要:

The emergence of novel nanobiomedicine has transformed the management of various infectious as well as non-infectious diseases.Lasiosiphon eriocephalus, a medicinal plant, revealed the presence of active secondary metabolites and biological potentials. The present study was aimed to demonstrate the biosynthesis of silver nanoparticles using L. eriocephalus leaf extract (LE-AgNPs) and their biological properties, such as antioxidant, antibacterial and anticancer potential. The biosynthesized LE-AgNPs were characterized by UV-Visible spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction, and Fourier transform infrared spectroscopy (FTIR) analysis. The antibacterial activity was checked by minimum inhibitory concentration (MIC) and zone of inhibition assays against Gram-positive and Gram-negative bacteria. The anticancer potential of biogenic LE-AgNPs was checked by cytotoxicity and genotoxicity assay against human cervical adenocarcinoma (HeLa) and human breast adenocarcinoma (MCF-7) cells. UV-visible spectroscopy confirmed the formation of silver nanoparticles by measuring the surface plasmon resonance peak of the colloidal solution at 410-440 nm. The results of SEM and TEM revealed the distribution and spherical shape of 20-50 nm sized AgNPs. XRD spectrum confirmed the characteristic peaks at the lattice planes 110, 111, 200, 220 and 311 of silver which confirmed the crystalline nature of biosynthesized LE-AgNPs. FTIR spectrum of plant extract and biogenic LE-AgNPs was recorded in between 1635-3320 cm-1 which confirmed stretching vibrations of possible functional groups C=C and O-H, responsible for the reduction of silver ions to silver nanoparticles. The in vitro antioxidant potential of LE-AgNPs was evaluated using DPPH (IC50 = 26.51 ± 1.15 μg/mL) and ABTS radical assays (IC50 =74.33 ± 2.47 μg/mL). The potential antibacterial effects of LE-AgNPs confirmed that 92.38 ± 2.70% growth inhibition occurred in E. coli in response to 0.1mg/mL concentration of LE-AgNPs followed by P. aeruginosa (75.51 ± 0.76), S. aureus (74.53 ± 1.26) and K. pneumoniae (67.4 ± 3.49). The cytotoxicity results interpreted that the biogenic silver nanoparticles exhibited strong dose and time dependent cytotoxicity effect against selected cancer cell lines where IC50 concentration of LE-AgNPs required to inhibit the growth of HeLa cells after 24 h exposure was 4.14 μg/mL and MCF7 cells 3.00 μg/mL, respectively. Significant DNA fragmentation was seen in the DNA extracted from HeLa and MCF-7 cells exposed to more than 2.5 to 10 μg/mL concentrations of LE-AgNPs. The overall findings from the present investigation indicated that the AgNPs synthesized using L. eriocephalus exerted strong biological potentials such as antioxidant, antimicrobial and extensive cytotoxicity and genotoxicity activities.

收起

展开

DOI:

10.2174/2211738511666221207153116

被引量:

1

年份:

2023

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1530)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读