Down-regulation miR-146a-5p in Schwann cell-derived exosomes induced macrophage M1 polarization by impairing the inhibition on TRAF6/NF-κB pathway after peripheral nerve injury.

来自 PUBMED

作者:

Sun JLiao ZLi ZLi HWu ZChen CWang H

展开

摘要:

Both Schwann cell-derived exosomes (SC-Exos) and macrophagic sub-phenotypes are closely related to the regeneration and repair after peripheral nerve injury (PNI). However, the crosstalk between them is less clear. We aim to investigate the roles and underlying mechanisms of exosomes from normoxia-condition Schwann cell (Nor-SC-Exos) and from post-injury oxygen-glucose-deprivation-condition Schwann cell in regulating macrophagic sub-phenotypes and peripheral nerve injury repair. Both Nor-SC-Exos and OGD-SC-Exos were extracted through ultracentrifugation, identified by transmission electron microscopy (TEM), Nanosight tracking analysis (NTA) and western blotting. High-throughput sequencing was performed to explore the differential expression of microRNAs in both SC-Exos. In vitro, RAW264.7 macrophage was treated with two types of SC-Exos, M1 macrophagic markers (IL-10, Arg-1, TGF-β1) and M2 macrophagic markers (IL-6, IL-1β, TNF-α) were detected by enzyme-linked Immunosorbent Assay (ELISA) or qRT-PCR, and the expression of CD206, iNOS were detected via cellular immunofluorescence (IF) to judge macrophage sub-phenotypes. Dorsal root ganglion neurons (DRGns) were co-cultured with RAW264.7 cells treated with Nor-SC-Exos and OGD-SC-Exos, respectively, to explore their effect on neuron growth. In vivo, we established a sciatic nerve crush injury rat model. Nor-SC-Exos and OGD-SC-Exos were locally injected into the injury site. The mRNA expression of M1 macrophagic markers (IL-10, Arg-1, TGF-β1) and M2 macrophagic markers (IL-6, IL-1β, TNF-α) were detected by qRT-PCR to determine the sub-phenotype of macrophages in the injury site. IF was used to detect the expression of MBP and NF200, reflecting the myelin sheath and axon regeneration, and sciatic nerve function index (SFI) was measured to evaluate function repair. In vitro, Nor-SC-Exos promoted macrophage M2 polarization, increased anti-inflammation factors secretion, and facilitated axon elongation of DRGns. OGD-SC-Exos promoted M1 polarization, increased pro-inflammation factors secretion, and restrained axon elongation of DRGns. High-throughput sequencing and qRT-PCR results found that compared with Nor-SC-Exos, a shift from anti-inflammatory (pro-M2) to pro-inflammatory (pro-M1) of OGD-SC-Exos was closely related to the down-regulation of miR-146a-5p and its decreasing inhibition on TRAF6/NF-κB pathway after OGD injury. In vivo, we found Nor-SC-Exos and miR-146a-5p mimic promoted regeneration of myelin sheath and axon, and facilitated sciatic function repair via targeting TRAF6, while OGD-SC-Exos and miR-146a-5p inhibitor restrained them. Our study confirmed that miR-146a-5p was significantly decreased in SC-Exos under the ischemia-hypoxic microenvironment of the injury site after PNI, which mediated its shift from promoting macrophage M2 polarization (anti-inflammation) to promoting M1 polarization (pro-inflammation), thereby limiting axonal regeneration and functional recovery.

收起

展开

DOI:

10.1016/j.expneurol.2022.114295

被引量:

9

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1084)

参考文献(0)

引证文献(9)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读