-
Improved Assembly of Metagenome-Assembled Genomes and Viruses in Tibetan Saline Lake Sediment by HiFi Metagenomic Sequencing.
With the development and reduced costs of high-throughput sequencing technology, environmental dark matter, such as novel metagenome-assembled genomes (MAGs) and viruses, is now being discovered easily. However, due to read length limitations, MAGs and viromes often suffer from genome discontinuity and deficiencies in key functional elements. Here, by applying long-read sequencing technology to sediment samples from a Tibetan saline lake, we comprehensively analyzed the performance of high-fidelity (HiFi) reads and the possibility of integration with short-read next-generation sequencing (NGS) data. In total, 207 full-length nonredundant 16S rRNA gene sequences and 19 full-length nonredundant 18S rRNA genes were directly obtained from HiFi reads, which greatly surpassed the retrieval performance of NGS technology. We carried out a cross-sectional comparison among multiple assembly strategies, referred to as 'NGS', 'Hybrid (NGS+HiFi)', and 'HiFi'. Two MAGs and 29 viruses with circular genomes were reconstructed using HiFi reads alone, indicating the great power of the 'HiFi' approach to assemble high-quality microbial genomes. Among the 3 strategies, the 'Hybrid' approach produced the highest number of medium/high-quality MAGs and viral genomes, while the ratio of MAGs containing 16S rRNA genes was significantly improved in the 'HiFi' assembly results. Overall, our study provides a practical metagenomic resolution for analyzing complex environmental samples by taking advantage of both the short-read and HiFi long-read sequencing methods to extract the maximum amount of information, including data on prokaryotes, eukaryotes, and viruses, via the 'Hybrid' approach. To expand the understanding of microbial dark matter in the environment, we did the first comparative evaluation of multiple assembly strategies based on high-throughput short-read and HiFi data from lake sediments metagenomic sequencing. The results demonstrated great improvement of the 'Hybrid' assembly method (short-read next-generation sequencing data plus HiFi data) in the recovery of medium/high-quality MAGs and viral genomes. Further analysis showed that HiFi data is important to retrieve the complete circular prokaryotic and viral genomes. Meanwhile, hundreds of full-length 16S/18S rRNA genes were assembled directly from HiFi data, which facilitated the species composition studies of complex environmental samples, especially for understanding micro-eukaryotes. Therefore, the application of the latest HiFi long-read sequencing could greatly improve the metagenomic assembly integrity and promote environmental microbiome research.
Tao Y
,Xun F
,Zhao C
,Mao Z
,Li B
,Xing P
,Wu QL
... -
《Microbiology Spectrum》
-
Improved microbial genomes and gene catalog of the chicken gut from metagenomic sequencing of high-fidelity long reads.
Due to the importance of chicken production and the remarkable influence of the gut microbiota on host health and growth, tens of thousands of metagenome-assembled genomes (MAGs) have been constructed for the chicken gut microbiome. However, due to the limitations of short-read sequencing and assembly technologies, most of these MAGs are far from complete, are of lower quality, and include contaminant reads.
We generated 332 Gb of high-fidelity (HiFi) long reads from the 5 chicken intestinal compartments and assembled 461 and 337 microbial genomes, of which 53% and 55% are circular, at the species and strain levels, respectively. For the assembled microbial genomes, approximately 95% were regarded as complete according to the "RNA complete" criteria, which requires at least 1 full-length ribosomal RNA (rRNA) operon encoding all 3 types of rRNA (16S, 23S, and 5S) and at least 18 copies of full-length transfer RNA genes. In comparison with the short-read-derived chicken MAGs, 384 (83% of 461) and 89 (26% of 337) strain-level and species-level genomes in this study are novel, with no matches to previously reported sequences. At the gene level, one-third of the 2.5 million genes in the HiFi-derived gene catalog are novel and cannot be matched to the short-read-derived gene catalog. Moreover, the HiFi-derived genomes have much higher continuity and completeness, as well as lower contamination; the HiFi-derived gene catalog has a much higher ratio of complete gene structures. The dominant phylum in our HiFi-assembled genomes was Firmicutes (82.5%), and the foregut was highly enriched in 5 genera: Ligilactobacillus, Limosilactobacillus, Lactobacillus, Weissella, and Enterococcus, all of which belong to the order Lactobacillales. Using GTDB-Tk, all 337 species-level genomes were successfully classified at the order level; however, 2, 35, and 189 genomes could not be classified into any known family, genus, and species, respectively. Among these incompletely classified genomes, 9 and 49 may belong to novel genera and species, respectively, because their 16S rRNA genes have identities lower than 95% and 97% to any known 16S rRNA genes.
HiFi sequencing not only produced metagenome assemblies and gene structures with markedly improved quality but also recovered a substantial portion of novel genomes and genes that were missed in previous short-read-based metagenome studies. The novel genomes and species obtained in this study will facilitate gut microbiome and host-microbiota interaction studies, thereby contributing to the sustainable development of poultry resources.
Zhang Y
,Jiang F
,Yang B
,Wang S
,Wang H
,Wang A
,Xu D
,Fan W
... -
《-》
-
Recovery of metagenome-assembled microbial genomes from a full-scale biogas plant of food waste by pacific biosciences high-fidelity sequencing.
Anaerobic digestion (AD) is important in treating of food waste, and thousands of metagenome-assembled genomes (MAGs) have been constructed for the microbiome in AD. However, due to the limitations of the short-read sequencing and assembly technologies, most of these MAGs are grouped from hundreds of short contigs by binning algorithms, and the errors are easily introduced.
In this study, we constructed a total of 60 non-redundant microbial genomes from 64.5 Gb of PacBio high-fidelity (HiFi) long reads, generated from the digestate samples of a full-scale biogas plant fed with food waste. Of the 60 microbial genomes, all genomes have at least one copy of rRNA operons (16S, 23S, and 5S rRNA), 54 have ≥18 types of standard tRNA genes, and 39 are circular complete genomes. In comparison with the published short-read derived MAGs for AD, we found 23 genomes with average nucleotide identity less than 95% to any known MAGs. Besides, our HiFi-derived genomes have much higher average contig N50 size, slightly higher average genome size and lower contamination. GTDB-Tk classification of these genomes revealed two genomes belonging to novel genus and four genomes belonging to novel species, since their 16S rRNA genes have identities lower than 95 and 97% to any known 16S rRNA genes, respectively. Microbial community analysis based on the these assembled genomes reveals the most predominant phylum was (70.5%), followed by (6.1%), and (4.7%), and the most predominant bacterial and archaeal genera were (69.1%) and (5.4%), respectively. Analysis of the full-length 16S rRNA genes identified from the HiFi reads gave similar microbial compositions to that derived from the 60 assembled genomes.
High-fidelity sequencing not only generated microbial genomes with obviously improved quality but also recovered a substantial portion of novel genomes missed in previous short-read based studies, and the novel genomes will deepen our understanding of the microbial composition in AD of food waste.
Jiang F
,Li Q
,Wang S
,Shen T
,Wang H
,Wang A
,Xu D
,Yuan L
,Lei L
,Chen R
,Yang B
,Deng Y
,Fan W
... -
《-》
-
Long-read metagenomics retrieves complete single-contig bacterial genomes from canine feces.
Long-read sequencing in metagenomics facilitates the assembly of complete genomes out of complex microbial communities. These genomes include essential biologic information such as the ribosomal genes or the mobile genetic elements, which are usually missed with short-reads. We applied long-read metagenomics with Nanopore sequencing to retrieve high-quality metagenome-assembled genomes (HQ MAGs) from a dog fecal sample.
We used nanopore long-read metagenomics and frameshift aware correction on a canine fecal sample and retrieved eight single-contig HQ MAGs, which were > 90% complete with < 5% contamination, and contained most ribosomal genes and tRNAs. At the technical level, we demonstrated that a high-molecular-weight DNA extraction improved the metagenomics assembly contiguity, the recovery of the rRNA operons, and the retrieval of longer and circular contigs that are potential HQ MAGs. These HQ MAGs corresponded to Succinivibrio, Sutterella, Prevotellamassilia, Phascolarctobacterium, Catenibacterium, Blautia, and Enterococcus genera. Linking our results to previous gastrointestinal microbiome reports (metagenome or 16S rRNA-based), we found that some bacterial species on the gastrointestinal tract seem to be more canid-specific -Succinivibrio, Prevotellamassilia, Phascolarctobacterium, Blautia_A sp900541345-, whereas others are more broadly distributed among animal and human microbiomes -Sutterella, Catenibacterium, Enterococcus, and Blautia sp003287895. Sutterella HQ MAG is potentially the first reported genome assembly for Sutterella stercoricanis, as assigned by 16S rRNA gene similarity. Moreover, we show that long reads are essential to detect mobilome functions, usually missed in short-read MAGs.
We recovered eight single-contig HQ MAGs from canine feces of a healthy dog with nanopore long-reads. We also retrieved relevant biological insights from these specific bacterial species previously missed in public databases, such as complete ribosomal operons and mobilome functions. The high-molecular-weight DNA extraction improved the assembly's contiguity, whereas the high-accuracy basecalling, the raw read error correction, the assembly polishing, and the frameshift correction reduced the insertion and deletion errors. Both experimental and analytical steps ensured the retrieval of complete bacterial genomes.
Cuscó A
,Pérez D
,Viñes J
,Fàbregas N
,Francino O
... -
《-》
-
Long-Read Sequencing Improves Recovery of Picoeukaryotic Genomes and Zooplankton Marker Genes from Marine Metagenomes.
Long-read sequencing offers the potential to improve metagenome assemblies and provide more robust assessments of microbial community composition and function than short-read sequencing. We applied Pacific Biosciences (PacBio) CCS (circular consensus sequencing) HiFi shotgun sequencing to 14 marine water column samples and compared the results with those for short-read metagenomes from the corresponding environmental DNA samples. We found that long-read metagenomes varied widely in quality and biological information. The community compositions of the corresponding long- and short-read metagenomes were frequently dissimilar, suggesting higher stochasticity and/or bias associated with PacBio sequencing. Long reads provided few improvements to the assembly qualities, gene annotations, and prokaryotic metagenome-assembled genome (MAG) binning results. However, only long reads produced high-quality eukaryotic MAGs and contigs containing complete zooplankton marker gene sequences. These results suggest that high-quality long-read metagenomes can improve marine community composition analyses and provide important insight into eukaryotic phyto- and zooplankton genetics, but the benefits may be outweighed by the inconsistent data quality. Ocean microbes provide critical ecosystem services, but most remain uncultivated. Their communities can be studied through shotgun metagenomic sequencing and bioinformatic analyses, including binning draft microbial genomes. However, most sequencing to date has been done using short-read technology, which rarely yields genome sequences of key microbes like SAR11. Long-read sequencing can improve metagenome assemblies but is hampered by technological shortcomings and high costs. In this study, we compared long- and short-read sequencing of marine metagenomes. We found a wide range of long-read metagenome qualities and minimal improvements to microbiome analyses. However, long reads generated draft genomes of eukaryotic algal species and provided full-length marker gene sequences of zooplankton species, including krill and copepods. These results suggest that long-read sequencing can provide greater genetic insight into the wide diversity of eukaryotic phyto- and zooplankton that interact as part of and with the marine microbiome.
Patin NV
,Goodwin KD
《mSystems》