IFIH1/IRF1/STAT1 promotes sepsis associated inflammatory lung injury via activating macrophage M1 polarization.

来自 PUBMED

作者:

Wang AKang XWang JZhang S

展开

摘要:

A growing body of research has shown that the phenotypic change in macrophages from M0 to M1 is essential for the start of the inflammatory process in septic acute respiratory distress syndrome (ARDS). Potential treatment targets might be identified with more knowledge of the molecular regulation of M1 macrophages in septic ARDS. A multi-microarray interrelated analysis of high-throughput experiments from ARDS patients and macrophage polarization was conducted to identify the hub genes associated with macrophage M1 polarization and septic ARDS. Lipopolysaccharide (LPS) and Poly (I:C) were utilized to stimulate bone marrow-derived macrophages (BMDMs) for M1-polarized macrophage model construction. Knock down of the hub genes on BMDMs via shRNAs was used to screen the genes regulating macrophage M1 polarization in vitro. The cecal ligation and puncture (CLP) mouse model was constructed in knockout (KO) mice and wild-type (WT) mice to explore whether the screened genes regulate macrophage M1 polarization in septic ARDS in vivo. ChIP-seq and further experiments on BMDMs were performed to investigate the molecular mechanism. The bioinformatics analysis of gene expression profiles from a clinical cohort of 26 ARDS patients and macrophage polarization found that the 5 hub genes (IFIH1, IRF1, STAT1, IFIT3, GBP1) may have a synergistic effect on macrophage M1 polarization in septic ARDS. Further in vivo investigations indicated that IFIH1, STAT1 and IRF1 contribute to macrophage M1 polarization. The histological evaluation and immunohistochemistry of the lungs from the IRF1-/- and WT mice indicated that knockout of IRF1 markedly alleviated CLP-induced lung injury and M1-polarized infiltration. Moreover, the molecular mechanism investigations indicated that knockdown of IFIH1 markedly promoted IRF1 translocation into the nucleus. Knockout of IRF1 significantly decreases the expression of STAT1. ChIP-seq and PCR further confirmed that IRF1, as a transcription factor of STAT1, binds to the promoter region of STAT1. IRF1 was identified as the key molecule that regulates macrophage M1polarization and septic ARDS development in vivo and in vitro. Moreover, as the adaptor in response to infection mimics irritants, IFIH1 promotes IRF1 (transcription factor) translocation into the nucleus to initiate STAT1 transcription.

收起

展开

DOI:

10.1016/j.intimp.2022.109478

被引量:

16

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(227)

参考文献(22)

引证文献(16)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读