Operation Moonshot: rapid translation of a SARS-CoV-2 targeted peptide immunoaffinity liquid chromatography-tandem mass spectrometry test from research into routine clinical use.

来自 PUBMED

摘要:

During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.

收起

展开

DOI:

10.1515/cclm-2022-1000

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(108)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读