The human embryonic genome is karyotypically complex, with chromosomally abnormal cells preferentially located away from the developing fetus.

来自 PUBMED

作者:

Griffin DKBrezina PRTobler KZhao YSilvestri GMccoy RCAnchan RBenner ACutting GRKearns WG

展开

摘要:

Are chromosome abnormalities detected at Day 3 post-fertilization predominantly retained in structures of the blastocyst other than the inner cell mass (ICM), where chromosomally normal cells are preferentially retained? In human embryos, aneuploid cells are sequestered away from the ICM, partly to the trophectoderm (TE) but more significantly to the blastocoel fluid within the blastocoel cavity (Bc) and to peripheral cells (PCs) surrounding the blastocyst during Day 3 to Day 5 progression. A commonly held dogma in all diploid eukaryotes is that two gametes, each with 'n' chromosomes (23 in humans), fuse to form a '2n' zygote (46 in humans); a state that remains in perpetuity for all somatic cell divisions. Human embryos, however, display high levels of chromosomal aneuploidy in early stages that reportedly declines from Day 3 (cleavage stage) to Day 5 (blastocyst) post-fertilization. While this observation may be partly because of aneuploid embryonic arrest before blastulation, it could also be due to embryo 'normalization' to a euploid state during blastulation. If and how this normalization occurs requires further investigation. A total of 964 cleavage-stage (Day 3) embryos underwent single-cell biopsy and diagnosis for chromosome constitution. All were maintained in culture, assessing blastulation rate, both for those assessed euploid and aneuploid. Pregnancy rate was assessed for those determined euploid, blastulated and subsequently transferred. For those determined aneuploid and blastulated (174 embryos), ICM (all 174 embryos), TE (all 174), Bc (47 embryos) and PC (38 embryos) were analyzed for chromosome constitution. Specifically, concordance with the original Day 3 diagnosis and determination if any 'normalized' to euploid karyotypes within all four structures was assessed. All patients (144 couples) were undergoing routine preimplantation genetic testing for aneuploidy in three IVF clinical settings. Cleavage-stage biopsy preceded chromosome analysis by next-generation sequencing. All patients provided informed consent. Additional molecular testing was carried out on blastocyst embryos and was analyzed for up to four embryonic structures (ICM, TE, Bc and PC). Of 463/964 embryos (48%) diagnosed as euploid at Day 3, 70% blastulated (leading to a 59% pregnancy rate) and 30% degenerated. Conversely, of the 501 (52%) diagnosed as aneuploid, 65% degenerated and 35% (174) blastulated, a highly significant difference (P < 0.0001). Of the 174 that blastulated, the ratio of '(semi)concordant-aneuploid' versus 'normalized-euploid' versus 'other-aneuploid' embryos was, respectively, 39%/57%/3% in the ICM; 49%/48%/3% in the TE; 78%/21%/0% in the PC; and 83%/10%/5% in the Bc. The TE karyotype therefore has a positive predictive value of 86.7% in determining that of the ICM, albeit with marginally higher aneuploid rates of abnormalities (P = .071). Levels of abnormality in Bc/PC were significantly higher (P < 0.0001) versus the ploidy of the ICM and TE and nearly all chromosome abnormalities were (at least partially) concordant with Day 3 diagnoses. The results only pertain to human IVF embryos so extrapolation to the in vivo situation and to other species is not certain. We acknowledge (rather than lineage-specific survival, as we suggest here) the possibility of other mechanisms, such as lineage-specific movement of cells, during blastulation. Ethical considerations, however, make investigating this mechanism difficult on human embryos. Mosaic human cleavage-stage embryos can differentiate into a euploid ICM where euploid cell populations predominate. Sequestering of aneuploid cells/nuclei to structures no longer involved in fetal development has important implications for preimplantation and prenatal genetic testing. These results also challenge previous fundamental understandings of mitotic fidelity in early human development and indicate a complex and fluid nature of the human embryonic genome. This research was funded by Organon Pharmaceuticals and Merck Serono by grants to W.G.K. W.G.K. is also an employee of AdvaGenix, who could, potentially, indirectly benefit financially from publication of this manuscript. R.C.M. is supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM133747. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. D.K.G. provides paid consultancy services for Care Fertility. : N/A.

收起

展开

DOI:

10.1093/humrep/deac238

被引量:

9

年份:

2023

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(500)

参考文献(24)

引证文献(9)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读