-
Network meta-analysis on the effects of finerenone versus SGLT2 inhibitors and GLP-1 receptor agonists on cardiovascular and renal outcomes in patients with type 2 diabetes mellitus and chronic kidney disease.
To evaluate the cardiovascular and renal benefits of finerenone, sodium-glucose cotransporter-2 inhibitors (SGLT2i) and glucagonlike peptide-1 receptor agonists (GLP-1 RA) in patients with Type 2 Diabetes Mellitus (T2DM) and chronic kidney disease (CKD) with network meta-analysis.
Systematic literature searches were conducted of PubMed, Cochrane Library, Web of Science, Medline and Embase covering January 1, 2000 to December 30, 2021. Randomized control trials (RCTs) comparing finerenone, SGLT-2i and GLP-1 RA in diabetics with CKD were selected. We performed a network meta-analysis to compare the two drugs and finerenone indirectly. Results were reported as risk ratio (RR) with corresponding 95% confidence interval (CI).
18 RCTs involving 51,496 patients were included. Finerenone reduced the risk of major adverse cardiovascular events (MACE), renal outcome and hospitalization for heart failure (HHF) (RR [95% CI]; 0.88 [0.80-0.97], 0.86 [0.79-0.93], 0.79 [0.67,0.92], respectively). SGLT-2i were associated with reduced risks of MACE (RR [95% CI]; 0.84 [0.78-0.90]), renal outcome (RR [95% CI]; 0.67 [0.60-0.74], HHF (RR [95% CI]; 0.60 [0.53-0.68]), all-cause death (ACD) (RR [95% CI]; 0.89 [0.81-0.91]) and cardiovascular death (CVD) (RR [95% CI]; 0.86 [0.77-0.96]) compared to placebo. GLP-1 RA were associated with a lower risk of MACE (RR [95% CI]; 0.86 [0.78-0.94]). SGLT2i had significant effect in comparison to finerenone (finerenone vs SGLT2i: RR [95% CI]; 1.29 [1.13-1.47], 1.31 [1.07-1.61], respectively) and GLP-1 RA (GLP-1 RA vs SGLT2i: RR [95% CI]; 1.36 [1.16-1.59], 1.49 [1.18-1.89], respectively) in renal outcome and HHF.
In patients with T2DM and CKD, SGLT2i, GLP-1 RA and finerenone were comparable in MACE, ACD and CVD. SGLT2i significantly decreased the risk of renal events and HHF compared with finerenone and GLP-1 RA. Among GLP-1 RA, GLP-1 analogues showed significant effect in reducing cardiovascular events compared with exendin-4 analogues.
Zhang Y
,Jiang L
,Wang J
,Wang T
,Chien C
,Huang W
,Fu X
,Xiao Y
,Fu Q
,Wang S
,Zhao J
... -
《Cardiovascular Diabetology》
-
Cardiovascular and renal outcomes with SGLT-2 inhibitors versus GLP-1 receptor agonists in patients with type 2 diabetes mellitus and chronic kidney disease: a systematic review and network meta-analysis.
Yamada T
,Wakabayashi M
,Bhalla A
,Chopra N
,Miyashita H
,Mikami T
,Ueyama H
,Fujisaki T
,Saigusa Y
,Yamaji T
,Azushima K
,Urate S
,Suzuki T
,Abe E
,Wakui H
,Tamura K
... -
《Cardiovascular Diabetology》
-
The efficacy and safety of novel classes of glucose-lowering drugs for cardiovascular outcomes: a network meta-analysis of randomised clinical trials.
Several cardiovascular outcome trials on sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been released recently, including trials enrolling patients with congestive heart failure (CHF) and chronic kidney disease (CKD). Comparisons of the efficacy and safety of SGLT2i, glucagon-like peptide-1 receptor agonists (GLP-1RA) and dipeptidyl peptidase-4 inhibitors (DPP-4i) thus require an update. Assessments in patient subgroups, i.e., as stratified by age or the presence of CHF, CKD or atherosclerotic cardiovascular disease (ASCVD), are also currently lacking.
We searched the PubMed, Embase and Cochrane databases for relevant studies published up until 5 December 2020. RCTs comparing SGLT2i, GLP-1RA and DPP-4i with placebo (or other controls) or with each other with cardiovascular (CV) or renal outcomes were eligible for inclusion. The primary efficacy endpoint was 3-point major adverse cardiovascular events (3P-MACE), which are defined as CV death, non-fatal myocardial infarction and non-fatal ischaemic stroke. All-cause mortality, hospitalisation for heart failure (HHF) and composite renal outcomes were also analysed. Pre-specified subgroup analyses of 3P-MACE were also performed.
A total of 21 trials with 170,930 participants were included in this network meta-analysis. Both GLP-1RA and SGLT2i were associated with lower risks of 3P-MACE than placebo (RR 0.89, 95% CI 0.84, 0.94 and RR 0.88, 95% CI 0.83, 0.94, respectively). GLP-1RA and SGLT2i were also associated with lower risks of 3P-MACE than DPP-4i (RR 0.89, 95% CI 0.82, 0.98 and RR 0.89, 95% CI 0.81, 0.97, respectively). A comparison between SGLT2i and GLP-1RA demonstrated no difference in their risks of 3P-MACE (RR 0.99, 95% CI 0.91, 1.08). Only GLP-1RA was associated with a lower risk of stroke compared with placebo (RR 0.85, 95% CI 0.76, 0.94). SGLT2i is superior to GLP-1RA in reducing HHF (RR 0.76, 95% CI 0.68, 0.84) and renal outcomes (RR 0.78, 95% CI 0.65, 0.93). Subgroup analyses indicated that the benefits of SGLT2i and GLP-1RA were more pronounced in elderly patients, white and Asian patients, those with established ASCVD and those with longer durations of diabetes mellitus and worse glycaemic control.
SGLT2i and GLP-1RA are superior to DPP-4i in terms of CV and renal outcomes. GLP-1RA is the only drug class that reduces the risk of stroke. SGLT2i is superior in reducing HHF and renal outcomes. Therefore, the choice between SGLT2i and GLP-1RA should be individualised according to patient profiles.
CRD42020206600.
Lin DS
,Lee JK
,Hung CS
,Chen WJ
... -
《-》
-
The effect of DPP-4 inhibitors, GLP-1 receptor agonists and SGLT-2 inhibitors on cardiorenal outcomes: a network meta-analysis of 23 CVOTs.
Glucagon-like peptide-1 receptor agonists (GLP-1RA) and sodium glucose co-transporter-2 (SGLT-2) inhibitors reduce cardiorenal outcomes. We performed a network meta-analysis to compare the effect on cardiorenal outcomes among GLP-1 RAs, SGLT-2 inhibitors and dipeptidyl peptidase-4 (DPP-4) inhibitors.
We searched the PUBMED, Embase and Cochrane databases for relevant studies published up until 10 December 2021. Cardiovascular and renal outcome trials reporting outcomes on GLP-1RA, SGLT-2 inhibitors and DPP-4 inhibitors in patients with or without type 2 diabetes mellitus were included. The primary outcome was major adverse cardiovascular events (MACE); other outcomes were cardiovascular and total death, nonfatal myocardial infarction (MI), nonfatal stroke, hospitalization for heart failure (HHF), and renal outcome.
Twenty-three trials enrolling a total number of 181,143 participants were included. DPP-4 inhibitors did not lower the risk of any cardiorenal outcome when compared with placebo and were associated with higher risks of MACE, HHF, and renal outcome when compared with the other two drug classes. SGLT-2 inhibitors significantly reduced cardiovascular (RR = 0.88) and total (RR = 0.87) death, as compared with DPP-4 inhibitors, while GLP-1 RA reduced total death only (RR = 0.87). The comparison between GLP-1RA and SGLT-2 inhibitors showed no difference in their risks of MACE, nonfatal MI, nonfatal stroke, CV and total death; SGLT-2 inhibitors were superior to GLP-1RA in reducing the risk of HHF and the renal outcome (24% and 22% lower risk, respectively). Only GLP-1RA reduced the risk of nonfatal stroke (RR = 0.84), as compared with placebo. There was no head-to-head trial directly comparing these antidiabetic drug classes.
SGLT-2 inhibitors and GLP-1RA are superior to DPP-4 inhibitors in reducing the risk of most cardiorenal outcomes; SGLT-2 inhibitors are superior to GLP-1RA in reducing the risk of HHF and renal events; GLP-1RA only reduced the risk of nonfatal stroke. Both SGLT-2 inhibitors and GLP-1RA should be the preferred treatment for type 2 diabetes and cardiorenal diseases.
Giugliano D
,Longo M
,Signoriello S
,Maiorino MI
,Solerte B
,Chiodini P
,Esposito K
... -
《Cardiovascular Diabetology》
-
Efficacy and safety of drugs for people with type 2 diabetes mellitus and chronic kidney disease on kidney and cardiovascular outcomes: A systematic review and network meta-analysis of randomized controlled trials.
To evaluate the comparative efficacy and safety of promising kidney protection drugs, including sodium-glucose cotransporter-2 inhibitors (SGLT-2Is), glucagon-like peptide-1 receptor agonists (GLP-1RAs), dipeptidyl-peptidase IV Inhibitors (DPP-4Is), aldosterone receptor agonists (MRAs), endothelin receptor antagonist (ERAs), pentoxifylline (PTF), and pirfenidone (PFD), on cardiovascular and kidney outcomes in type 2 diabetes (T2DM) and chronic kidney disease (CKD) population.
PubMed, Embase, and Cochrane Library were searched from inception to August 12, 2022. We used the Bayesian model for network meta-analyses, registered in the PROSPERO (CRD42022343601).
This network meta-analysis identified 2589 citations, and included 27 eligible trials, enrolling 50,237 patients. All results presented below were moderate to high quality. For kidney outcomes, SGLT-2Is were optimal in terms of reducing composite kidney events (RR 0.69, 95%CI 0.61-0.79), and slowing eGFR slope (MD1.34, 95%CI 1.06-1.62). Then MRAs (RR 0.77, 95%CI 0.68-0.88; MD 1.31, 95%CI 0.89-1.74), GLP-1RAs (RR 0.78, 95%CI 0.62-0.97; MD 0.75, 95%CI 0.46-1.05), and ERAs (RR 0.75, 95%CI 0.57-0.99; MD 0.7, 95%CI 0.3-1.1) were followed in parallel. For cardiovascular outcomes, SGLT-2 inhibitors were also among the best for lowing the risk of heart failure hospitalization (RR 0.67, 95%CI 0.57-0.78), followed by GLP-1RAs (RR 0.73, 95%CI 0.55-0.97) and MRAs (RR 0.79, 95%CI 0.67-0.92). SGLT-2Is (RR 0.8, 95%CI 0.71-0.89) and GLP-1RAs (RR 0.72, 95%CI 0.6-0.86) had comparable effects to reduce the risk of major adverse cardiovascular events. MRAs were possibly associated with increased drug discontinuation due to adverse events (RR 1.21, 95%CI 1.05-1.38). For the hyperkalemia outcome, MRAs (RR 2.08, 95%CI 1.86-2.33) were linked to the risk of hyperkalemia, whereas SGLT-2Is (RR 0.78, 95%CI 0.65-0.93) were in contrast.
SGLT-2Is significantly reduced kidney and cardiovascular risk in T2DM and CKD, subsequently GLP-1RAs and MRAs. SGLT-2Is-MRAs combination might be a recommended treatment regimen for maximizing kidney and cardiovascular protection but with a low risk of hyperkalemia in T2DM and CKD.
Yang Q
,Lang Y
,Yang W
,Yang F
,Yang J
,Wu Y
,Xiao X
,Qin C
,Zou Y
,Zhao Y
,Kang D
,Liu F
... -
《-》