Complete chloroplast genome of Boesenbergia rotunda and a comparative analysis with members of the family Zingiberaceae.
Boesenbergia rotunda (L.) Mansf. is a medically important ginger species of the family Zingiberaceae but its genomic information on molecular phylogeny and identification is scarce. In this work, the chloroplast genome of B. rotunda was sequenced, characterized and compared to the other Zingiberaceae species to provide chloroplast genetic resources and to determine its phylogenetic position in the family. The chloroplast genome of B. rotunda was 163,817 bp in length and consisted of a large single-copy (LSC) region of 88,302 bp, a small single-copy (SSC) region of 16,023 bp and a pair of inverted repeats (IRA and IRB) of 29,746 bp each. The chloroplast genome contained 113 unique genes, including 79 protein-coding genes, 30 transfer RNA (tRNA) genes and four ribosomal RNA (rRNA) genes. Several genes had atypical start codons, while most amino acids exhibited biased usage of synonymous codons. Comparative analyses with various chloroplast genomes of Zingiberaceae taxa revealed several highly variable regions (psbK-psbI, trnT-GGU-psbD, rbcL-accD, ndhF-rpl32, and ycf1) in the LSC and SSC regions in the chloroplast genome of B. rotunda that could be utilized as molecular markers for DNA barcoding and species delimitation. Phylogenetic analyses based on shared protein-coding genes revealed that B. rotunda formed a distinct lineage with B. kingii Mood & L.M.Prince, in a subclade that also contained the genera Kaempferia and Zingiber. These findings constitute the first chloroplast genome information of B. rotunda that could be a reference for phylogenetic analysis and identification of genus Boesenbergia within the Zingiberaceae family.
The online version contains supplementary material available at 10.1007/s40415-022-00845-w.
Liew YJM
,Chua KO
,Yong HS
,Song SL
,Chan KG
... -
《-》
Molecular evolution of chloroplast genomes in subfamily Zingiberoideae (Zingiberaceae).
Zingiberoideae is a large and diverse subfamily of the family Zingiberaceae. Four genera in subfamily Zingiberoideae each possess 50 or more species, including Globba (100), Hedychium (> 80), Kaempferia (50) and Zingiber (150). Despite the agricultural, medicinal and horticultural importance of these species, genomic resources and suitable molecular markers for them are currently sparse.
Here, we have sequenced, assembled and analyzed ten complete chloroplast genomes from nine species of subfamily Zingiberoideae: Globba lancangensis, Globba marantina, Globba multiflora, Globba schomburgkii, Globba schomburgkii var. angustata, Hedychium coccineum, Hedychium neocarneum, Kaempferia rotunda 'Red Leaf', Kaempferia rotunda 'Silver Diamonds' and Zingiber recurvatum. These ten chloroplast genomes (size range 162,630-163,968 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 87,172-88,632 bp), a small single copy (SSC, 15,393-15,917 bp) and a pair of inverted repeats (IRs, 29,673-29,833 bp). The genomes contain 111-113 different genes, including 79 protein coding genes, 28-30 tRNAs and 4 rRNA genes. The dynamics of the genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats exhibit similarities, with slight differences observed among the ten genomes. Further comparative analysis of seventeen related Zingiberoideae species, 12 divergent hotspots are identified. Positive selection is observed in 14 protein coding genes, including accD, ccsA, ndhA, ndhB, psbJ, rbcL, rpl20, rpoC1, rpoC2, rps12, rps18, ycf1, ycf2 and ycf4. Phylogenetic analyses, based on the complete chloroplast-derived single-nucleotide polymorphism data, strongly support that Globba, Hedychium, and Curcuma I + "the Kaempferia clade" consisting of Curcuma II, Kaempferia and Zingiber, form a nested evolutionary relationship in subfamily Zingiberoideae.
Our study provides detailed information on ten complete Zingiberoideae chloroplast genomes, representing a valuable resource for future studies that seek to understand the molecular evolutionary dynamics in family Zingiberaceae. The identified divergent hotspots can be used for development of molecular markers for phylogenetic inference and species identification among closely related species within four genera of Globba, Hedychium, Kaempferia and Zingiber in subfamily Zingiberoideae.
Li DM
,Li J
,Wang DR
,Xu YC
,Zhu GF
... -
《BMC PLANT BIOLOGY》
Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae).
The genus Zingiber of the Zingiberaceae is distributed in tropical, subtropical, and in Far East Asia. This genus contains about 100-150 species, with many species valued as important agricultural, medicinal and horticultural resources. However, genomic resources and suitable molecular markers for species identification are currently sparse.
We conducted comparative genomics and phylogenetic analyses on Zingiber species. The Zingiber chloroplast genome (size range 162,507-163,711 bp) possess typical quadripartite structures that consist of a large single copy (LSC, 86,986-88,200 bp), a small single copy (SSC, 15,498-15,891 bp) and a pair of inverted repeats (IRs, 29,765-29,934 bp). The genomes contain 113 unique genes, including 79 protein coding genes, 30 tRNA and 4 rRNA genes. The genome structures, gene contents, amino acid frequencies, codon usage patterns, RNA editing sites, simple sequence repeats and long repeats are conservative in the genomes of Zingiber. The analysis of sequence divergence indicates that the following genes undergo positive selection (ccsA, ndhA, ndhB, petD, psbA, psbB, psbC, rbcL, rpl12, rpl20, rpl23, rpl33, rpoC2, rps7, rps12 and ycf3). Eight highly variable regions are identified including seven intergenic regions (petA-pabJ, rbcL-accD, rpl32-trnL-UAG, rps16-trnQ-UUG, trnC-GCA-psbM, psbC-trnS-UGA and ndhF-rpl32) and one genic regions (ycf1). The phylogenetic analysis revealed that the sect. Zingiber was sister to sect. Cryptanthium rather than sect. Pleuranthesis.
This study reports 14 complete chloroplast genomes of Zingiber species. Overall, this study provided a solid backbone phylogeny of Zingiber. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for Zingiber) of the generation of DNA markers. These results provide a foundation for future studies that seek to understand the molecular evolutionary dynamics or individual population variation in the genus Zingiber.
Jiang D
,Cai X
,Gong M
,Xia M
,Xing H
,Dong S
,Tian S
,Li J
,Lin J
,Liu Y
,Li HL
... -
《BMC GENOMICS》