Targeted conditional collagen XII deletion alters tendon function.
摘要:
Collagen XII is a fibril-associated collagen with interrupted triple helices (FACIT). This non-fibrillar collagen is a homotrimer composed of three α1(XII) chains assembled into a collagenous molecule with a C terminal collagenous domain and a large N terminal non-collagenous domain. During tendon development and growth, collagen XII is broadly expressed throughout the extracellular matrix and enriched pericellularly around tenocytes. Tendons in a global Col12a1 -/- knockout model demonstrated disrupted fibril and fiber structure and disordered tenocyte organization, highlighting the critical regulatory roles of collagen XII in determining tendon structure and function. However, muscle and bone also are affected in the collagen XII knockout model. Therefore, secondary effects on tendon due to involvement of bone and muscle may occur in the global knockout. The global knockout does not allow the definition of intrinsic mechanisms involving collagen XII in tendon versus extrinsic roles involving muscle and bone. To address this limitation, we created and characterized a conditional Col12a1-null mouse model to permit the spatial and temporal manipulation of Col12a1 expression. Collagen XII knockout was targeted to tendons by breeding conditional Col12a1 flox/flox mice with Scleraxis-Cre (Scx-Cre) mice to yield a tendon-specific Col12a1-null mouse line, Col12a1 Δten/Δten . Both mRNA and protein expression in Col12a1 Δten/Δten mice decreased to near baseline levels in flexor digitorum longus tendons (FDL). Collagen XII immuno-localization revealed an absence of reactivity in the tendon proper, but there was reactivity in the cells of the surrounding peritenon. This supports a targeted knockout in tenocytes while peritenon cells from a non-tendon lineage were not targeted and retained collagen XII expression. The tendon-targeted, Col12a1 Δten/Δten mice had significantly reduced forelimb grip strength, altered gait and a significant decrease in biomechanical properties. While the observed decrease in tendon modulus suggests that differences in tendon material properties in the absence of Col12a1 expression underlie the functional deficiencies. Together, these findings suggest an intrinsic role for collagen XII critical for development of a functional tendon.
收起
展开
DOI:
10.1016/j.mbplus.2022.100123
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(94)
参考文献(35)
引证文献(4)
来源期刊
影响因子:暂无数据
JCR分区: 暂无
中科院分区:暂无