-
A novel stemness-hypoxia-related signature for prognostic stratification and immunotherapy response in hepatocellular carcinoma.
The specific differentiation potential, unlimited proliferation, and self-renewal capacity of cancer stem cells (CSCs) are closely related to the occurrence, recurrence, and drug resistance of hepatocellular carcinoma (HCC), as well as hypoxia. Therefore, an in-depth analysis of the relationship between HCC stemness, oxygenation status, and the effectiveness of immunotherapy is necessary to improve the poor prognosis of HCC patients.
The weighted gene co-expression network analysis (WGCNA) was utilized to find hypoxia-related genes, and the stemness index (mRNAsi) was evaluated using the one-class logistic regression (OCLR) technique. Based on stemness-hypoxia-related genes (SHRGs), population subgroup categorization using NMF cluster analysis was carried out. The relationship between SHRGs and survival outcomes was determined using univariate Cox regression. The LASSO-Cox regression strategy was performed to investigate the quality and establish the classifier associated with prognosis. The main effect of risk scores on the tumor microenvironment (TME) and its response to immune checkpoint drugs was also examined. Finally, qRT-PCR was performed to explore the expression and prognostic value of the signature in clinical samples.
After identifying tumor stemness- and hypoxia-related genes through a series of bioinformatics analyses, we constructed a prognostic stratification model based on these SHRGs, which can be effectively applied to the prognostic classification of HCC patients and the prediction of immune checkpoint inhibitors (ICIs) efficacy. Independent validation of the model in the ICGC cohort yielded good results. In addition, we also constructed hypoxic cell models in Herp3B and Huh7 cells to verify the expression of genes in the prognostic model and found that C7, CLEC1B, and CXCL6 were not only related to the tumor stemness but also related to hypoxia. Finally, we found that the constructed signature had a good prognostic value in the clinical sample.
We constructed and validated a stemness-hypoxia-related prognostic signature that can be used to predict the efficacy of ICIs therapy. We also verified that C7, CLEC1B, and CXCL6 are indeed associated with stemness and hypoxia through a hypoxic cell model, which may provide new ideas for individualized immunotherapy.
Zhang G
,Zhang K
,Zhao Y
,Yang Q
,Lv X
... -
《BMC CANCER》
-
Predictive value of a stemness-based classifier for prognosis and immunotherapy response of hepatocellular carcinoma based on bioinformatics and machine-learning strategies.
Significant advancements have been made in hepatocellular carcinoma (HCC) therapeutics, such as immunotherapy for treating patients with HCC. However, there is a lack of reliable biomarkers for predicting the response of patients to therapy, which continues to be challenging. Cancer stem cells (CSCs) are involved in the oncogenesis, drug resistance, and invasion, as well as metastasis of HCC cells. Therefore, in this study, we aimed to create an mRNA expression-based stemness index (mRNAsi) model to predict the response of patients with HCC to immunotherapy.
We retrieved gene expression and clinical data of patients with HCC from the GSE14520 dataset and the Cancer Genome Atlas (TCGA) database. Next, we used the "one-class logistic regression (OCLR)" algorithm to obtain the mRNAsi of patients with HCC. We performed "unsupervised consensus clustering" to classify patients with HCC based on the mRNAsi scores and stemness subtypes. The relationships between the mRNAsi model, clinicopathological features, and genetic profiles of patients were compared using various bioinformatic methods. We screened for differentially expressed genes to establish a stemness-based classifier for predicting the patient's prognosis. Next, we determined the effect of risk scores on the tumor immune microenvironment (TIME) and the response of patients to immune checkpoint blockade (ICB). Finally, we used qRT-PCR to investigate gene expression in patients with HCC.
We screened CSC-related genes using various bioinformatics tools in patients from the TCGA-LIHC cohort. We constructed a stemness classifier based on a nine-gene (PPARGC1A, FTCD, CFHR3, MAGEA6, CXCL8, CABYR, EPO, HMMR, and UCK2) signature for predicting the patient's prognosis and response to ICBs. Further, the model was validated in an independent GSE14520 dataset and performed well. Our model could predict the status of TIME, immunogenomic expressions, congenic pathway, and response to chemotherapy drugs. Furthermore, a significant increase in the proportion of infiltrating macrophages, Treg cells, and immune checkpoints was observed in patients in the high-risk group. In addition, tumor cells in patients with high mRNAsi scores could escape immune surveillance. Finally, we observed that the constructed model had a good expression in the clinical samples. The HCC tumor size and UCK2 genes expression were significantly alleviated and decreased, respectively, by treatments of anti-PD1 antibody. We also found knockdown UCK2 changed expressions of immune genes in HCC cell lines.
The novel stemness-related model could predict the prognosis of patients and aid in creating personalized immuno- and targeted therapy for patients in HCC.
Chen E
,Zou Z
,Wang R
,Liu J
,Peng Z
,Gan Z
,Lin Z
,Liu J
... -
《Frontiers in Immunology》
-
Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients.
Immunotherapy has made great progress in hepatocellular carcinoma (HCC), yet there is still a lack of biomarkers for predicting response to it. Cancer stem cells (CSCs) are the primary cause of the tumorigenesis, metastasis, and multi-drug resistance of HCC. This study aimed to propose a novel CSCs-related cluster of HCC to predict patients' response to immunotherapy. Based on RNA-seq datasets from The Cancer Genome Atlas (TCGA) and Progenitor Cell Biology Consortium (PCBC), one-class logistic regression (OCLR) algorithm was applied to compute the stemness index (mRNAsi) of HCC patients. Unsupervised consensus clustering was performed to categorize HCC patients into two stemness subtypes which further proved to be a predictor of tumor immune microenvironment (TIME) status, immunogenomic expressions and sensitivity to neoadjuvant therapies. Finally, four machine learning algorithms (LASSO, RF, SVM-RFE and XGboost) were applied to distinguish different stemness subtypes. Thus, a five-hub-gene based classifier was constructed in TCGA and ICGC HCC datasets to predict patients' stemness subtype in a more convenient and applicable way, and this novel stemness-based classification system could facilitate the prognostic prediction and guide clinical strategies of immunotherapy and targeted therapy in HCC.
Chen D
,Liu J
,Zang L
,Xiao T
,Zhang X
,Li Z
,Zhu H
,Gao W
,Yu X
... -
《International Journal of Biological Sciences》
-
Prognostic clinical phenotypes associated with tumor stemness in the immune microenvironment of T-cell exhaustion for hepatocellular carcinoma.
T-cell exhaustion (TEX) and high heterogeneity of cancer stem cells (CSCs) are associated with progression, metastasis, and treatment resistance in hepatocellular carcinoma (HCC). Here, we aim to characterize TEX-stemness-related genes (TEXSRGs) and screen for HCC patients who are more sensitive to immunotherapy. The immune cell abundance identifier (ImmuCellAI) was utilized to precisely evaluate the abundance of TEX and screen TEX-related genes. The stemness index (mRNAsi) of samples was analyzed through the one-class logistic regression (OCLR) algorithm. Application of the non-negative matrix decomposition algorithm (NMF) for subtype identification of HCC samples. The different subtypes were assessed for differences in prognosis, tumor microenvironment (TME) landscape, and immunotherapy treatment response. Then, the TEXSRGS-score, which can accurately forecast the survival outcome of HCC patients, was built by LASSO-Cox and multivariate Cox regression, and experimentally validated for the most important TEXSRGs. We also analyzed the expression of TEXSRGs and the infiltration of CD8+ T cells in clinical samples using qRT-PCR and immunohistochemistry (IHC). Based on 146 TEXSRGs, we found two distinct clinical phenotypes with different TEX infiltration abundance, tumor stemness index, enrichment pathways, mutational landscape, and immune cell infiltration through the non-negative matrix decomposition algorithm (NMF), which were confirmed in the ICGC dataset. Utilizing eight TEXSRGs linked to clinical outcome, we created a TEXSRGs-score model to further improve the clinical applicability. Patients can be divided into two groups with substantial differences in the characteristics of immune cell infiltration, TEX infiltration abundance, and survival outcomes. The results of qRT-PCR and IHC analysis showed that PAFAH1B3, ZIC2, and ESR1 were differentially expressed in HCC and normal tissues and that patients with high TEXSRGs-scores had higher TEX infiltration abundance and tumor stemness gene expression. Regarding immunotherapy reaction and immune cell infiltration, patients with various TEXSRGs-score levels had various clinical traits. The outcome and immunotherapy efficacy of patients with low TEXSRGs-score was favorable. In conclusion, we identified two clinical subtypes with different prognoses, TEX infiltration abundance, tumor cell stemness index, and immunotherapy response based on TEXSRGs, and developed and validated a TEXSRGs-score capable of accurately predicting survival outcomes in HCC patients by comprehensive bioinformatics analysis. We believe that the TEXSRGs-score has prospective clinical relevance for prognostic assessment and may help physicians select prospective responders in preference to current immune checkpoint inhibitors (ICIs).
Zhang G
《-》
-
Identification of chromatin organization-related gene signature for hepatocellular carcinoma prognosis and predicting immunotherapy response.
Chromatin organization is associated with tumorigenesis; however, information on its role in hepatocellular carcinoma (HCC) is limited. Moreover, although immune checkpoint inhibitors (ICIs) have proven effective against HCC, the optimal index remains unknown. In this study, we aimed to construct a chromatin organization-related gene signature (CORGS) for prognosis and predicting response to ICIs in HCC.
HCC-related data were obtained from The Cancer Genome Atlas (TCGA) and International Cancer Genome Construction (ICGC). Chromatin organization-related genes (CORGs) were retrieved from Gene Set Enrichment Analysis. Differentially expressed genes (DEGs) and prognostic genes were then applied to select candidate genes using advanced statistical methods, including learning vector quantization, random forest, and lasso regression. Subsequently, the CORGS was established based on chromatin organization-related hub genes using multivariate Cox regression analysis, evaluated with Kaplan-Meier survival curves, and verified in 64 samples of HCC patients from Fujian Provincial Hospital (FPH) via quantitative PCR. Subsequently, functional enrichment analysis, tumor somatic mutation analysis, and tumor immune analysis were performed to evaluate the potential value of the CORGS.
Three hundred and thirty-nine CORGs were identified as DEGs, and 186 were associated with HCC prognosis (all P < 0.05). Four intersection genes were selected to establish the CORGS using TCGA cohort, which was found to serve as an independent risk factor for HCC patients. CORGS was then validated in an ICGC cohort. In addition, CORGS reliability was verified in 64 samples from HCC patients and 26 adjacent non-tumorous tissues, collected from the FPH. The CORGS was also associated with tumor immune microenvironment characteristics and ICI response. Moreover, data from "IMvigor 210" revealed that more patients in the low CORGS group responded to atezolizumab compared to high CORGS patients (P < 0.05). Finally, a nomogram of tumor characteristics and the CORGS was established, exhibiting superior discrimination and calibration compared to the current staging system and published models.
CORGS may serve as an effective predictive biomarker for HCC as well as a potential index of the tumor immune microenvironment and ICI response.
Chen J
,Chen X
,Li T
,Wang L
,Lin G
... -
《-》