AI nutrition recommendation using a deep generative model and ChatGPT.
In recent years, major advances in artificial intelligence (AI) have led to the development of powerful AI systems for use in the field of nutrition in order to enhance personalized dietary recommendations and improve overall health and well-being. However, the lack of guidelines from nutritional experts has raised questions on the accuracy and trustworthiness of the nutritional advice provided by such AI systems. This paper aims to address this issue by introducing a novel AI-based nutrition recommendation method that leverages the speed and explainability of a deep generative network and the use of novel sophisticated loss functions to align the network with established nutritional guidelines. The use of a variational autoencoder to robustly model the anthropometric measurements and medical condition of users in a descriptive latent space, as well as the use of an optimizer to adjust meal quantities based on users' energy requirements enable the proposed method to generate highly accurate, nutritious and personalized weekly meal plans. Coupled with the ability of ChatGPT to provide an unparalleled pool of meals from various cuisines, the proposed method can achieve increased meal variety, accuracy and generalization capabilities. Extensive experiments on 3000 virtual user profiles and 84000 daily meal plans, as well as 1000 real profiles and 7000 daily meal plans, demonstrate the exceptional accuracy of the proposed diet recommendation method in generating weekly meal plans that are appropriate for the users in terms of energy intake and nutritional requirements, as well as the easiness with which it can be integrated into future diet recommendation systems.
Papastratis I
,Konstantinidis D
,Daras P
,Dimitropoulos K
... -
《Scientific Reports》
Personalized Flexible Meal Planning for Individuals With Diet-Related Health Concerns: System Design and Feasibility Validation Study.
Chronic diseases such as heart disease, stroke, diabetes, and hypertension are major global health challenges. Healthy eating can help people with chronic diseases manage their condition and prevent complications. However, making healthy meal plans is not easy, as it requires the consideration of various factors such as health concerns, nutritional requirements, tastes, economic status, and time limits. Therefore, there is a need for effective, affordable, and personalized meal planning that can assist people in choosing food that suits their individual needs and preferences.
This study aimed to design an artificial intelligence (AI)-powered meal planner that can generate personalized healthy meal plans based on the user's specific health conditions, personal preferences, and status.
We proposed a system that integrates semantic reasoning, fuzzy logic, heuristic search, and multicriteria analysis to produce flexible, optimized meal plans based on the user's health concerns, nutrition needs, as well as food restrictions or constraints, along with other personal preferences. Specifically, we constructed an ontology-based knowledge base to model knowledge about food and nutrition. We defined semantic rules to represent dietary guidelines for different health concerns and built a fuzzy membership of food nutrition based on the experience of experts to handle vague and uncertain nutritional data. We applied a semantic rule-based filtering mechanism to filter out food that violate mandatory health guidelines and constraints, such as allergies and religion. We designed a novel, heuristic search method that identifies the best meals among several candidates and evaluates them based on their fuzzy nutritional score. To select nutritious meals that also satisfy the user's other preferences, we proposed a multicriteria decision-making approach.
We implemented a mobile app prototype system and evaluated its effectiveness through a use case study and user study. The results showed that the system generated healthy and personalized meal plans that considered the user's health concerns, optimized nutrition values, respected dietary restrictions and constraints, and met the user's preferences. The users were generally satisfied with the system and its features.
We designed an AI-powered meal planner that helps people create healthy and personalized meal plans based on their health conditions, preferences, and status. Our system uses multiple techniques to create optimized meal plans that consider multiple factors that affect food choice. Our evaluation tests confirmed the usability and feasibility of the proposed system. However, some limitations such as the lack of dynamic and real-time updates should be addressed in future studies. This study contributes to the development of AI-powered personalized meal planning systems that can support people's health and nutrition goals.
Amiri M
,Li J
,Hasan W
《-》
Can ChatGPT provide appropriate meal plans for NCD patients?
Dietary habits significantly affect health conditions and are closely related to the onset and progression of non-communicable diseases (NCDs). Consequently, a well-balanced diet plays an important role in lessening the effects of various disorders, including NCDs. Several artificial intelligence recommendation systems have been developed to propose healthy and nutritious diets. Most of these systems use expert knowledge and guidelines to provide tailored diets and encourage healthier eating habits. However, new advances in large language models such as ChatGPT, with their ability to produce human-like responses, have led individuals to search for advice in several tasks, including diet recommendations. This study aimed to determine the ability of ChatGPT models to generate appropriate personalized meal plans for patients with obesity, cardiovascular diseases, and type 2 diabetes.
Using a state-of-the-art knowledge-based recommendation system as a reference, we assessed the meal plans generated by two large language models in terms of energy intake, nutrient accuracy, and meal variability.
Experimental results with different user profiles revealed the potential of ChatGPT models to provide personalized nutritional advice.
Additional supervision and guidance by nutrition experts or knowledge-based systems are required to ensure meal appropriateness for users with NCDs.
Papastratis I
,Stergioulas A
,Konstantinidis D
,Daras P
,Dimitropoulos K
... -
《-》
Developing a Personalized Meal Recommendation System for Chinese Older Adults: Observational Cohort Study.
China's older population is facing serious health challenges, including malnutrition and multiple chronic conditions. There is a critical need for tailored food recommendation systems. Knowledge graph-based food recommendations offer considerable promise in delivering personalized nutritional support. However, the integration of disease-based nutritional principles and preference-related requirements needs to be optimized in current recommendation processes.
This study aims to develop a knowledge graph-based personalized meal recommendation system for community-dwelling older adults and to conduct preliminary effectiveness testing.
We developed ElCombo, a personalized meal recommendation system driven by user profiles and food knowledge graphs. User profiles were established from a survey of 96 community-dwelling older adults. Food knowledge graphs were supported by data from websites of Chinese cuisine recipes and eating history, consisting of 5 entity classes: dishes, ingredients, category of ingredients, nutrients, and diseases, along with their attributes and interrelations. A personalized meal recommendation algorithm was then developed to synthesize this information to generate packaged meals as outputs, considering disease-related nutritional constraints and personal dietary preferences. Furthermore, a validation study using a real-world data set collected from 96 community-dwelling older adults was conducted to assess ElCombo's effectiveness in modifying their dietary habits over a 1-month intervention, using simulated data for impact analysis.
Our recommendation system, ElCombo, was evaluated by comparing the dietary diversity and diet quality of its recommended meals with those of the autonomous choices of 96 eligible community-dwelling older adults. Participants were grouped based on whether they had a recorded eating history, with 34 (35%) having and 62 (65%) lacking such data. Simulation experiments based on retrospective data over a 30-day evaluation revealed that ElCombo's meal recommendations consistently had significantly higher diet quality and dietary diversity compared to the older adults' own selections (P<.001). In addition, case studies of 2 older adults, 1 with and 1 without prior eating records, showcased ElCombo's ability to fulfill complex nutritional requirements associated with multiple morbidities, personalized to each individual's health profile and dietary requirements.
ElCombo has shown enhanced potential for improving dietary quality and diversity among community-dwelling older adults in simulation tests. The evaluation metrics suggest that the food choices supported by the personalized meal recommendation system surpass autonomous selections. Future research will focus on validating and refining ElCombo's performance in real-world settings, emphasizing the robust management of complex health data. The system's scalability and adaptability pinpoint its potential for making a meaningful impact on the nutritional health of older adults.
Xu Z
,Gu Y
,Xu X
,Topaz M
,Guo Z
,Kang H
,Sun L
,Li J
... -
《-》