-
Cornin protects against cerebral ischemia/reperfusion injury by preventing autophagy via the PI3K/Akt/mTOR pathway.
Ischemia stroke is the leading cause of disability, which is a consequence of vascular occlusion. The purpose of this study is to investigate the effect of cornin which is isolated from the fruit of Verbena officinalis L, against astrocytes autophagy induced by cerebral ischemia/reperfusion (CI/R) injury in vitro and in vivo and its potential mechanism.
Cornin at dose of 2.5, 5 and 10 mg/kg were intravenously injected to MCAO rats at 15 min after reperfusion. The infarction volume, blood-brain barrier (BBB), neurological severity score (mNSS), and autophagy related protein were used to evaluated the protective effects and potential mechanism of cornin in autophagy with or without phosphoinositide-3 kinase (PI3K)inhibitor LY294002 and mammalian target of rapamycin (mTOR) small interfering RNA (siRNA) at 24 h after CI/R injury. The potential protective effects and mechanism of cornin at concention of 10 ~ 1000 nM were also evaluated in oxygen glucose deprivation/reperfusion (OGD/R) in U87 cells.
The results suggest that cornin at dose of 5 or 10 mg/kg significantly reduce the cerebral infarction volume and blood-brain barrier (BBB) leakage, and improve neurological recovery in MCAO rats. Cleaved caspase-3 and Bax levels were significantly decreased, while B-cell lymphoma-2 (Bcl-2) and the apoptosis regulator ratio (Bcl-2/Bax) were markedly increased when treated with 2.5-10 mg/kg cornin. The obvious decreased expressions of glial fibrillary acidic protein (GFAP), myosin-like BCL2 interacting protein (Beclin-1) and microtubule-associated protein light chain 3 II (LC3-II) and increased of neuronal nuclei (NeuN), sequestosome-1 (p62), phosphorylated mTOR (p-mTOR), and phosphorylated Akt (p-Akt) were observed in MCAO rats treated with 10 mg/kg cornin, which was counteracted by LY294002. The expression of autophagy-related proteins with or without LY294002 and mTOR siRNA presented the similar results as in vitro in OGD/R in U87 cells.
These results indicate that cornin improved neurological recovery after cerebral ischemia injury by preventing astrocytes autophagy induced by CI/R via the PI3K/Akt/mTOR signaling pathway.
Lan T
,Xu Y
,Li S
,Li N
,Zhang S
,Zhu H
... -
《BMC Pharmacology & Toxicology》
-
Trametenolic acid B protects against cerebral ischemia and reperfusion injury through modulation of microRNA-10a and PI3K/Akt/mTOR signaling pathways.
Trametenolic acid B (TAB) was a lanostane-type triterpenoid isolated from the trametes lactinea (Berk.) Pat. We have previously reported that extract from trametes lactinea (Berk.) Pat and TAB could efficiently improve learning and memory ability of the cerebral ischemia injury rats and suppress mitochondrial-mediated apoptosis in hydrogen peroxide damaged SH-SY5Y cells. However, the potential mechanisms have not been fully understood yet. The current study was to further investigate the protective effect of TAB on oxygen glucose deprivation/reoxygenation (OGD/R)-damaged SH-SY5Y cells and cerebral ischemia/reperfusion (I/R) injury rats, as well as its mechanisms involved. Cell experiments demonstrated that TAB (10, 20 and 40 μg/mL) protected OGD/R-induced SH-SY5Y cell injury by promoting cell proliferation and suppressing LDH leakage; Meanwhile, the results in vivo showed that TAB (20, 40 and 80 mg/kg) might significantly ameliorate the neurological deficit score, cerebral edema, neuronal cell loss and apoptosis, suppress cerebral infarction volume of the cerebral I/R injury rats. Further studies in vitro and in vivo indicated TAB could efficiently reduce OGD/R-damaged SH-SY5Y cell and cerebral I/R rat serum ROS, LDH and MDA levels, elevate SOD, GSH-Px and CAT activities, downregulate miR-10a mRNA and Bax, cytochrome C, cleaved-caspase-3 and cleaved-caspase-9 protein expressions, upregulate p-PIK3CA, p-Akt, p-mTOR, Bcl-2, pro-caspase-9 and pro-caspase-3 protein expressions and p-PIK3CA/PIK3CA, p-Akt/Akt, p-mTOR/mTOR ratios (P < 0.05 or P < 0.01, respectively). Our present study indicated that TAB possessed neuroprotective property against ODG/R and I/R injury by suppressing miR-10a expression, activating PI3K/Akt/mTOR signaling pathway, thereby reducing mitochondrial-mediated apoptosis, which provided a new insight for interpreting the underlying mechanisms of TAB' neuroprotective effect and a candidate agent to treat cerebral I/R injury.
Wang J
,Wang A
,He H
,She X
,He Y
,Li S
,Liu L
,Luo T
,Huang N
,Luo H
,Zou K
... -
《-》
-
Gomisin N attenuated cerebral ischemia-reperfusion injury through inhibition of autophagy by activating the PI3K/AKT/mTOR pathway.
Ischemic stroke is a major global cause of mortality and permanent disability. Studies have shown that autophagy is essential to maintain cell homeostasis and inevitably lead to neuronal damage after cerebral ischemia. Gomisin N (GN), lignin isolated from Schisandra chinensis, possesses multiple pharmacological activities. However, there is no research on the potential of GN for neuroprotection in ischemic stroke.
The current work aimed to explore the potential therapeutic possibilities of GN on ischemic stroke and investigate the underlying molecular mechanisms.
The neuroprotective effects of GN on PC12 cells induced by oxygen glucose deprivation/reoxygenation (OGD/R) and mice with middle cerebral artery occlusion/reperfusion (MCAO/R) injury were investigated.
On day 3 after ischemia, the infarct volume and neurological function were assessed. The level of autophagy was measured in vivo and in vitro using Transmission electron microscopy (TEM) and Monodansylcadaverine (MDC) staining. The interaction between GN and PI3K/AKT/mTOR pathway was investigated by molecular docking. Additionally, the expressions of critical proteins in the PI3K/AKT/mTOR signaling pathway and autophagy markers were determined by western blotting.
In compared to the Model group, GN might considerably improve the neurological and locomotor function following a stroke, as well as lower the volume of the cerebral infarct volume and the number of autophagosomes. GN therapy may suppress autophagy by activating the PI3K/Akt/mTOR signaling pathway in the penumbra. In vitro, MDC and TEM results showed that GN treatment obviously suppressed autophagy. Meanwhile, GN downregulated LC3II/LC3I expression ratio while upregulated the p62 expression level. In further studies, GN dramatically boosted the expression ratios of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR proteins in PC12 cells following OGD/R damage. However, the PI3K inhibitor (LY294002) reversed the increase of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR expression ratio induced by GN administration. Also, LY294002 significantly partially attenuated GN induced reduction of autophagy and increase of cell viability compared with GN treatment alone.
Here, we first demonstrate the neuroprotective effects of GN on MCAO mice and OGD/R induced PC12 cells injury. A possible mechanism by which GN prevents ischemic stroke is proposed: GN could restrain autophagy by stimulating the PI3K/AKT/mTOR signaling pathways. More effects and mechanisms of GN on the rehabilitation of ischemic stroke are worthy to be explored in the future.
Li R
,Zheng Y
,Zhang J
,Zhou Y
,Fan X
... -
《-》
-
Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway.
Dexmedetomidine has been shown to protect against cerebral ischemia-reperfusion injury (CIRI). Nevertheless, the precise mechanism is obscure. In order to explore the effect of dexmedetomidine pre-conditioning on autophagy against CIRI in rats, middle cerebral artery occlusion (MCAO) was conducted to establish cerebral ischemia-reperfusion (I/R) model in male SD rats with 2 h ischemia and 24 h reperfusion. Dexmedetomidine was delivered to rats at 10, 50 and 100 µg/kg doses respectively, and LY294002, a PI3K/Akt/mTOR pathway inhibitor, was administered at 10 mg/kg intraperitoneally 30 min before MCAO. Neurological deficit score was assessed and cerebral infarct size was detected by TTC staining. Morris water maze (MWM) was performed to estimate spatial learning and memory ability. Furthermore, to detect activity of PI3K/Akt/mTOR pathway and autophagy, p-Akt, p-mTOR, Beclin-1 and LC3 were measured by western blot. Our findings revealed that 50 and 100 µg/kg of dexmedetomidine pretreatment could improve the neurological deficit score and reduce cerebral infarct size after CIRI, while these effects were markedly suppressed by LY294002. In MWM test, dexmedetomidine was confirmed to shorten escape latency and increase times across platform after CIRI. Nevertheless, LY294002 pretreatment eliminated the improvement of dexmedetomidine on spatial learning and memory ability. Furthermore, dexmedetomidine pretreatment reduced ratios of Beclin-1 and LC3II/LC3I and elevated p-Akt/Akt and p-mTOR/mTOR after CIRI. However, above effects of dexmedetomidine were partly reversed by LY294002. Overall, dexmedetomidine pretreatment exerted neuroprotection against CIRI in rats by attenuating autophagy via the PI3K/Akt/mTOR pathway.
Li J
,Wang K
,Liu M
,He J
,Zhang H
,Liu H
... -
《-》
-
Dehydrocostuslactone attenuated oxygen and glucose deprivation/reperfusion-induced PC12 cell injury through inhibition of apoptosis and autophagy by activating the PI3K/AKT/mTOR pathway.
The purpose of this study is to investigate the protective effect of dehydrocostuslactone (DHL) on PC12 cells injury induced by oxygen and glucose deprivation/reperfusion (OGD/R) and its possible mechanism on the PI3K/AKT/mTOR pathway. The maestro 11.1 software was used to predict the binding sites of DHL with LC3, Beclin-1, PI3K, AKT, mTOR, Bax, Bcl-2, Caspase-3, Caspase-9, and Caspase-7. We used a cellular model of 2 h of OGD and 24 h of reperfusion to mimic cerebral ischemia-reperfusion injury. Cells were treated with DHL during the reperfusion phase. The docking results showed that DHL had binding sites with LC3, Beclin-1, PI3K, AKT, mTOR, Bax, Bcl-2, Caspase-3, Caspase-9, and Caspase-7. The expression levels of autophagy-related proteins, LC3 and Beclin-1 increased while P-PI3K, P-AKT, and P-mTOR decreased. Apoptosis-related proteins, namely, Bax, Cyto-c, Caspase-3, Caspase-7, Caspase-9 increased, but the anti-apoptosis Bcl-2 protein decreased. However, DHL effectively inhibited these undesirable changes induced by OGD/R in PC12 cells. Our results suggested that DHL attenuated OGD/R-induced neuronal injury by inhibiting apoptosis and autophagy by activating PI3K/AKT/mTOR signaling. This inhibition can improve cell survival and offer evidence for the beneficial effects of DHL on the nervous system.
Meng J
,Ma H
,Zhu Y
,Zhao Q
... -
《-》