Adverse reaction signals mining and hemorrhagic signals comparison of ticagrelor and clopidogrel: A pharmacovigilance study based on FAERS.
Background: Ticagrelor and clopidogrel are commonly used antiplatelet agents, and we conducted a pharmacovigilance analysis using the Food and Drug Administration Adverse Event Reporting System (FAERS) to provide a reference for safe and reasonable clinical use. Methods: Data were collected in FAERS from 2012 Q1 to 2022 Q2 for data cleaning. We used system organ classes (SOCs) and prefer terms (PTs) from the Medical Dictionary of Regulatory Activity (MedDRA version 25.1). Adverse event reports were retrieved at the PT level. Adverse reaction (ADR) signals of ticagrelor and clopidogrel were mined by calculating reporting odds ratios (ROR), proportional reporting ratios (PRR), information component (IC) and empirical Bayesian geometric mean (EBGM). After that, further analysis of the hemorrhagic signals and their clinical information were performed. Results: The number of ADR reports where the primary suspect (PS) drugs were 15,133 for ticagrelor and 23,860 for clopidogrel. Significant ADR signals were identified by the SOC analysis for ticagrelor including cardiac disorders (ROR 4.87, PRR 4.46), respiratory disorders (ROR 2.45, PRR 2.28), and vascular disorders (ROR 2.22, PRR 2.16). Clopidogrel included blood disorders (ROR 2.86, PRR 2.77), vascular disorders (ROR 2.71, PRR 2.61), and cardiac disorders (ROR 2.29, PRR 2.22). At the PT level, the more frequent ADR signals for ticagrelor were dyspnoea, contusion, and haemorrhage, while clopidogrel were gastrointestinal haemorrhage, anaemia, and drug interaction. The hemorrhagic signals of both were mainly focused on the SOC level of gastrointestinal disorders, injury disorders and vascular disorders and nervous system disorders. The death and life-threatening rate of ticagrelor was 7.76 percentage higher than that of clopidogrel. Conclusion: Clinicians need to pay attention to not only common ADRs but also be alert to new ADR signals when choosing to use ticagrelor and clopidogrel. This study provides a reference for the reasonable and safe clinical use of ticagrelor and clopidogrel.
Tang S
,Wu Z
,Xu L
,Wen Q
,Zhang X
... -
《Frontiers in Pharmacology》
A disproportionality analysis of FDA adverse event reporting system (FAERS) events for ticagrelor.
Ticagrelor is a commonly used antiplatelet agent, but due to the stringent criteria for trial population inclusion and the limited sample size, its safety profile has not been fully elucidated.
We utilized OpenVigil 2.1 to query the FDA Adverse Event Reporting System database and retrieved reports by the generic name "ticagrelor" published between 1 October 2010 and 31 March 2023. Adverse drug events (ADEs) were classified and described according to the preferred terms and system organ classes in the Medical Dictionary of Regulatory Activity. Proportional reporting ratio (PRR), reporting odds ratio (ROR) and Bayesian Confidence Propagation Neural Network (BCPNN) were used to detect signals.
The number of ADE reports with ticagrelor as the primary suspect drug was 12,909. The top three ADEs were dyspnea [1824 reports, ROR 7.34, PRR 6.45, information component (IC) 2.68], chest pain (458 reports, ROR 5.43, PRR 5.27, IC 2.39), and vascular stent thrombosis (406 reports, ROR 409.53, PRR 396.68, IC 8.02). The highest ROR, 630.24, was found for "vascular stent occlusion". Cardiac arrest (137 reports, ROR 3.41, PRR 3.39, IC 1.75), atrial fibrillation (99 reports, ROR 2.05, PRR 2.04, IC 1.03), asphyxia (101 reports, ROR 23.60, PRR 23.43, IC 4.51), and rhabdomyolysis (57 reports, ROR 2.75, PRR 2.75, IC 1.45) were suspected new adverse events of ticagrelor.
The FAERS database produced potential signals associated with ticagrelor that have not been recorded in the package inserts, such as cardiac arrest, atrial fibrillation, asphyxia, and rhabdomyolysis. Further clinical surveillance is needed to quantify and validate potential hazards associated with ticagrelor-related adverse events.
Pan Y
,Wang Y
,Zheng Y
,Chen J
,Li J
... -
《Frontiers in Pharmacology》
Postmarketing safety of anaplastic lymphoma kinase (ALK) inhibitors: an analysis of the FDA Adverse Event Reporting System (FAERS).
Inhibitors of the anaplastic lymphoma kinase (ALK) gene mutation are highly effective treatments for ALK-positive lung cancer. We conducted this pharmacovigilance analysis using the Food and Drug Administration Adverse Event Reporting System (FAERS).
FAERS files from 2012 to 2020 were used. Reports for crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib were filtered. We used the Medical Dictionary for Regulatory Activities (MedDRA version 22.1). Further, we searched for adverse events on the preferred term (PT) level based on case reports in the literature. After filtering duplicate reports, disproportionality analysis was used to detect safety signals by calculating proportional reporting ratios (PRRs), reporting odds ratios (RORs), empirical Bayesian geometric mean, and information component. Reports were considered statistically significant if the 95% confidence interval did not contain the null value.
Within the system organ classes, significant safety signals were found, including those for crizotinib [eye disorders (PRR 2.09, ROR 2.12)], ceritinib [gastrointestinal disorders (PRR 2.19, ROR 2.41), hepatobiliary disorders (PRR 4.4, ROR 4.52), respiratory disorders (PRR 1.96, ROR 2.08)], alectinib [hepatobiliary disorders (PRR 2.60, ROR 2.63)], brigatinib [respiratory disorders (PRR 2.15, ROR 2.31)], and lorlatinib [metabolism disorders (PRR 3.34, ROR 3.53)]. For adverse events on the PT level, we found several significant signals, including pneumothorax with crizotinib (PRR 3.29, ROR 3.29), ceritinib (PRR 3.13, ROR 3.13), and alectinib (PRR 4.88, ROR 4.89); myasthenia gravis with lorlatinib (PRR 6.05, ROR 6.05); photosensitivity reactions with crizotinib (PRR 2.20, ROR 2.20), ceritinib (PRR 4.30, ROR 4.31), alectinib (PRR 20.43, ROR 20.51), and brigatinib (PRR 20.97, ROR 21.05); pulmonary arterial hypertension with brigatinib (PRR 2.92, ROR 2.92) and lorlatinib (PRR 9.2, ROR 9.24); and rectal perforation with crizotinib (PRR 7.83, ROR 7.83). All the detected safety signals were confirmed using Bayesian methods.
ALK inhibitors differed in their safety profile reports. We found several significant safety signals that matched previously published case reports, including pulmonary arterial hypertension, rectal perforation, myasthenia gravis, and photosensitivity. These signals require further regulatory investigation to determine their significance and potentially update the product labels to inform patients and clinicians.
Omar NE
,Fahmy Soliman AI
,Eshra M
,Saeed T
,Hamad A
,Abou-Ali A
... -
《ESMO Open》