ETV2 promotes osteogenic differentiation of human dental pulp stem cells through the ERK/MAPK and PI3K-Akt signaling pathways.

来自 PUBMED

作者:

Li JDu HJi XChen YLi YHeng BCXu J

展开

摘要:

The repair of cranio-maxillofacial bone defects remains a formidable clinical challenge. The Ets variant 2 (ETV2) transcription factor, which belongs to the E26 transformation-specific (ETS) family, has been reported to play a key role in neovascularization. However, the role of ETV2 in the osteogenesis of human dental pulp stem cells (hDPSCs) remains unexplored. Transgenic overexpression of ETV2 was achieved using a lentiviral vector, based on a Dox-inducible system. The effects of Dox-induced overexpression of ETV2 on the osteogenesis of hDPSCs were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, immunofluorescence staining, alkaline phosphatase (ALP) staining, and Alizarin Red S (ARS) staining. Additionally, RNA-sequencing (RNA-Seq) analysis was performed to analyze the underlying mechanisms of ETV2-induced osteogenesis. Additionally, the role of ETV2 overexpression in bone formation in vivo was validated by animal studies with a rat calvarial defect model and a nude mice model. Our results demonstrated that ETV2 overexpression significantly upregulated the mRNA and protein expression levels of osteogenic markers, markedly enhanced ALP activity, and promoted matrix mineralization of hDPSCs. Moreover, the results of RNA-Seq analysis and western blot showed that the ERK/MAPK and PI3K-Akt signaling pathways were activated upon transgenic overexpression of ETV2. The enhanced osteogenic differentiation of hDPSCs due to ETV2 overexpression was partially reversed by treatment with inhibitors of ERK/MAPK or PI3K-AKT signaling. Furthermore, the results of in vivo studies demonstrated that ETV2 overexpression improved bone healing in a rat calvarial defect model and increased ectopic bone formation in nude mice. Collectively, our results indicated that ETV2 overexpression exerted positive effects on the osteogenesis of hDPSCs, at least partially via the ERK/MAPK and PI3K/AKT signaling pathways.

收起

展开

DOI:

10.1186/s13287-022-03052-2

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(242)

参考文献(44)

引证文献(4)

来源期刊

Stem Cell Research & Therapy

影响因子:8.071

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读