Construction of a prognostic signature for serous ovarian cancer based on lactate metabolism-related genes.

来自 PUBMED

作者:

Xiang JSu RWu SZhou L

展开

摘要:

The key biochemical feature of malignant tumor is the conversion of energy metabolism from oxidative phosphorylation to glycolysis, which provides sufficient capacity and raw materials for tumor cell rapid growth. Our study aims to construct a prognostic signature for ovarian cancer based on lactate metabolism-related genes (LMRGs). Data of ovarian cancer and non-diseased ovarian data were downloaded from TCGA and the GTEx database, respectively. LMRGs were obtained from GeneCards and MSigDB databases, and the differentially expressed LMRGs were identified using limma and DESeq2 R packages. Cox regression analysis and LASSO were performed to determine the LMRGs associated with OS and develop the prognostic signature. Then, clinical significance of the prognostic signature in ovarian cancer was assessed. A total of 485 differentially expressed LMRGs in ovarian tissue were selected for subsequent analysis, of which 324 were up-regulated and 161 were down regulated. We found that 22 LMRGs were most significantly associated with OS by using the univariate regression analysis. The prognostic scoring model was consisted of 12 LMRGs (SLCO1B3, ERBB4, SLC28A1, PDSS1, BDH1, AIFM1, TSFM, PPARGC1A, HGF, FGFR1, ABCC8, TH). Kaplan-Meier survival analysis indicated that poorer overall survival (OS) in the high-risk group patients (P<0.0001). This prognostic signature could be an independent prognostic indicator after adjusting to other clinical factors. The calibration curves of nomogram for the signature at 1, 2, and 3 years and the ROC curve demonstrated good agreement between the predicted and observed survival rates of ovarian cancer patients. Furthermore, the high-risk group patients have much lower expression level of immune checkpoint-TDO2 compared with the low-risk group (P=0.024). We established a prognostic signature based on LMRGs for ovarian cancer, and highlighted emerging evidence indicating that this prognostic signature is a promising approach for predicting ovarian cancer prognosis and guiding clinical therapy.

收起

展开

DOI:

10.3389/fonc.2022.967342

被引量:

2

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(116)

参考文献(45)

引证文献(2)

来源期刊

Frontiers in Oncology

影响因子:5.732

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读