-
In vivo investigation of the inhibitory effect of Peganum harmala L. and its major alkaloids on ethylene glycol-induced urolithiasis in rats.
Peganum harmala L. is a traditional medicinal plant used for centuries in folk medicine. It has a wide array of therapeutic attributes, which include hypoglycemic, sedative, anti-inflammatory, and antioxidant properties. The fruit decoction of this plant was claimed by Avicenna as traditional therapy for urolithiasis. Also, P. harmala seed showed a clinical reduction in kidney stone number and size in patients with urolithiasis.
In light of the above-mentioned data, the anti-urolithiatic activities of the seed extracts and the major β-carboline alkaloids of P. harmala were investigated.
Extraction, isolation, and characterization of the major alkaloids were performed using different chromatographic and spectral techniques. The in vivo anti-urolithiatic action was evaluated using ethylene glycol (EG)-induced urolithiasis in rats by studying their mitigating effects on the antioxidant machinery, serum toxicity markers (i.e. nitrogenous waste, such as blood urea nitrogen, uric acid, urea, and creatinine), minerals (such as Ca, Mg, P, and oxalate), kidney injury marker 1 (KIM-1), and urinary markers (i.e. urine pH and urine output).
Two major alkaloids, harmine (P1) and harmalacidine HCl (P2), were isolated and in vivo evaluated alongside the different extracts. The results showed that P. harmala and its constituents/fractions significantly reduced oxidative stress at 50 mg/kg body weight, p.o., as demonstrated by increased levels of glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), and catalase (CAT) in kidney homogenate as compared to the EG-treated group. Likewise, the total extract, pet. ether fraction, n-butanol fraction, and P1, P2 alleviated malondialdehyde (MDA) as compared to the EG-treated group. Serum toxicity markers like blood urea nitrogen (BUN), creatinine, uric acid, urea, kidney injury molecule-1 (Kim-1), calcium, magnesium, phosphate, and oxalate levels were decreased by total extract, pet. ether fraction, n-butanol fraction, P1, and P2 as compared to the EG-treated group. Inflammatory markers like NFκ-B and TNF-α were also downregulated in the kidney homogenate of treatment groups as compared to the EG-treated group. Moreover, urine output and urine pH were significantly increased in treatment groups as compared to the EG-treated group deciphering anti-urolithiatic property of P. harmala. Histopathological assessment by different staining patterns also supported the previous findings and indicated that treatment with P. harmala caused a gradual recovery in damaged glomeruli, medulla, interstitial spaces and tubules, and brown calculi materials as compared to the EG-treated group.
The current research represents scientific evidence on the use of P. harmala and its major alkaloids as an effective therapy in the prevention and management of urolithiasis.
Rashid S
,Sameti M
,Alqarni MH
,Abdel Bar FM
... -
《-》
-
Anti-urolithiatic Activity of Daidzin in Ethylene Glycol-Induced Urolithiasis in Rats.
Urolithiasis is a common urological disorder, which causes considerable morbidity in both genders at all age groups worldwide. Though treatment options such as diuretics and non-invasive techniques to disintegrate the deposits are available, but often they are found less effective in the clinics. In this work, we planned to investigate the ameliorative effects of daidzin against the ethylene glycol (EG)-induced urolithiasis in rats. The male albino rats were distributed into four groups (n = 6) as control (group I), urolithiasis induced by the administration of 0.75% EG (group II), urolithiasis induced rats treated with 50 mg/kg of daidzin (group III), and urolithiasis rats treated with standard drug 750 mg/kg of cystone (group IV). The urine volume, pH, and total protein in the urine were assessed. The activities of marker enzymes in both plasma and kidney tissues were analyzed using assay kits. The levels of kidney function markers such as calcium, oxalate, urea, creatinine, uric acid, magnesium, BUN, and phosphorous were estimated using assay kits. The status of antioxidants and inflammatory cytokines were also examined using kits. The renal tissues were examined by histopathological analysis. Our results revealed that the daidzin treatment effectively decreased the urine pH and protein level and increased the urine volume in the urolithiasis rats. Daidzin decreased the calcium, oxalate, uric acid, and urea, creatinine, and BUN levels and also improved the magnesium and phosphorus in the urolithiasis rats. The activities of AST, ALT, ALP, GGT, and LDH were effectively reduced by the daidzin in both serum and renal tissue. Daidzin also reduced the inflammatory marker and increased the antioxidant levels. Histopathology results also proved the therapeutic effects of daidzin. Together, our results displayed that daidzin is effective in the amelioration of EG-induced urolithiasis in rats.
Yuan S
,Ibrahim IAA
,Ren R
《-》
-
Anti-urolithiatic effects of Punica granatum in male rats.
The traditional use of Punica granatum has been reported to regulate urine discharge and controls the burning sensation of urine.
Animals model of calcium oxalate urolithiasis was developed in male rats by adding ethylene glycol 0.75% in drinking water. The Punica granatum chloroform extract (PGCE) and Punica grantum methanol extract (PGME) orally at 100, 200 and 400mg/kg, respectively, were administered along with ethylene glycol for 28 days. On 28 day, 24h urine was collected from individual rats and used for estimation of urine calcium, phosphate and oxalate. The serum creatinine, urea and uric acid levels were estimated in each animal. The kidney homogenate was used for the estimation of renal oxalate contents. The paraffin kidney sections were prepared to observe the CaOx deposits.
The ethylene glycol control (Gr.-II) had significant (P<0.001 vs. normal) increase in levels of urine oxalate, calcium and phosphate, serum creatinine, urea and uric acid and renal tissues oxalates, as compared to normal (Gr.-I). The paraffin kidney sections show significant histopathological changes. The treatment of PGCE and PGME at 100, 200 and 400mg/kg doses, significantly (P<0.001 vs. control) decreased the urine oxalate, calcium and phosphate, renal tissue oxalates and serum creatinine, urea and uric acid, in EG induced urolithiasis after 28 days.
The PGCE and PGME at the doses of 400mg/kg, found to be more effective in decreasing the urolithiasis and regeneration of renal tissues in male rats.
Rathod NR
,Biswas D
,Chitme HR
,Ratna S
,Muchandi IS
,Chandra R
... -
《-》
-
Cymbopogon proximus and Petroselinum crispum seed ethanolic extract/Gum Arabic nanogel emulsion: Preventing ethylene glycol and ammonium chloride-induced urolithiasis in rats.
Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.
Essa HA
,Ali AM
,Saied MA
《-》
-
Inhibition of myeloperoxidase activity by the alkaloids of Peganum harmala L. (Zygophyllaceae).
Seeds and aerial parts of Peganum harmala L. are widely used in Algeria as anti-inflammatory remedies. Evaluation of Peganum harmala total alkaloids extracts and pure β-carboline compounds as an anti-inflammatory treatment by the inhibition of an enzyme key of inflammatory, myeloperoxidase (MPO) and HPLC quantification of the alkaloids from the different parts of plant.
MPO inhibition was tested using taurine chloramine test. The inhibition of LDL oxidation induced by MPO was carried out. The molecular docking analysis of Peganum harmala alkaloids on MPO was performed using the Glide XP docking protocol and scoring function and the redox potential of alkaloids was determined using an Epsilon potentiostat. The concentration of harmala alkaloids was determined using HPLC analysis.
The HPLC profiling of the active total alkaloids indicates that β-carboline e.g. harmine, harmaline, harmane, harmol and harmalol are major components. As β-carbolines resemble tryptamine, of which derivatives are efficient inhibitors of MPO, the harmala alkaloids were tested for their activity on this enzyme. Total alkaloids of the seeds and of the aerial parts strongly inhibited MPO at 20µg/mL (97±5% and 43±4%, respectively) whereas, at the same concentration, those of the roots showed very low inhibition (15±6%). Harmine, harmaline and harmane demonstrated a significant inhibition of MPO at IC50 of 0.26, 0.08 and 0.72µM respectively. These alkaloids exerted a similar inhibition effects on MPO-induced LDL oxidation. Molecular docking analysis of Peganum harmala alkaloids on MPO showed that all active Peganum harmala alkaloids have a high affinity on the active site of MPO (predicted free energies of binding up to -3.1kcal/mol). Measurement of redox potentials versus the normal hydrogen electrode clearly differentiated (i) the high MPO inhibitory activity of harmine, harmaline and harmane (+1014, 1014 and 1003mV, respectively); and (ii) the low activity of harmalol and harmol (+629/778 and 532/644mV, respectively). A reverse phase HPLC method has been developed to determine simultaneously five alkaloids of Peganum harmala. Seeds contained all five β-carboline derivatives with the main active alkaloids, harmaline and harmine, being up to 3.8% and 2.9%, respectively. Up to 3.2% of harmine was determined in the roots. The four β-carboline derivatives, harmine, harmaline, harmane and harmalol were identified in the aerial parts. The highest inhibitory effect observed in seeds and the moderate effect of aerial parts could be explained by their harmine and harmaline content. In contrast, the very weak inhibition of the root extract, despite the presence of harmine, may tentatively be explained by the high concentration of harmol which can reduce Compound II of MPO to the native form.
The inhibition of MPO by Peganum harmala β-carboline alkaloids, herein reported for the first time, may explain the anti-inflammatory effect traditionally attributed to its herbal medicine.
Bensalem S
,Soubhye J
,Aldib I
,Bournine L
,Nguyen AT
,Vanhaeverbeek M
,Rousseau A
,Boudjeltia KZ
,Sarakbi A
,Kauffmann JM
,Nève J
,Prévost M
,Stévigny C
,Maiza-Benabdesselam F
,Bedjou F
,Van Antwerpen P
,Duez P
... -
《-》