-
Characteristics of the immune microenvironment and their clinical significance in non-small cell lung cancer patients with ALK-rearranged mutation.
Although immune checkpoint inhibitors (ICIs) are one of the most important treatments for advanced-stage non-small-cell lung cancer (NSCLC), NSCLC patients with ALK-rearranged usually don't obtain a clinical benefit. The reason may be related to the unique tumor microenvironment (TME). We evaluated the characteristics of immune biomarkers of the TME and their prognostic value in ALK-rearranged NSCLC.
Tumor samples from patients with ALK-rearranged (N = 39) and EGFR- (N = 40)/KRAS- (N = 30) mutated NSCLC were collected. Immunohistochemistry (IHC) was used to assess the expression of 9 tumor immune markers as well as 6 immune markers of tumor-infiltrating cells. To research the TME of ALK-rearranged NSCLC, EGFR/KRAS-positive patients were used as controls. Furthermore, the correlation between the efficacy and prognosis of patients with advanced-stage (IIIC-IV) ALK rearrangements treated with targeted drugs was analyzed in terms of the TME.
The proportion of PD-L1+ tumors was lower in ALK-positive NSCLC than in KRAS-positive NSCLC. Besides, the proportion of T cells expressing TIM-3-CD8+ (15.38%), CTLA4-CD8+ (12.82%), LAG3-CD8+ (33.33%) and PD-1-CD8+ (2.56%) in ALK-positive NSCLC was lower than that in EGFR/KRAS-positive NSCLC. The expression of CD3, CD8 T cells and CD20 B cells was lower in ALK-positive NSCLC than in KRAS-positive NSCLC (p < 0.0001, < 0.005, and < 0.001, respectively). Nevertheless, the level of CD4 helper T cells was higher in ALK-positive NSCLC than in EGFR/KRAS-positive NSCLC (p < 0.0001 and p < 0.05, respectively). The repression of TIM3 was higher in ALK-positive NSCLC than in KRAS-positive NSCLC (p < 0.001). In addition, our data showed that high expression of PD-L1 (HR = 0.177, 95% CI 0.038-0.852, p = 0.027) and CTLA4 (HR = 0.196, 95% CI 0.041-0.947, p = 0.043) was related to lower OS in advanced-stage ALK- rearranged NSCLC patients treated with ALK tyrosine kinase inhibitors (TKIs).
Immunosuppressive status was characteristic of the TME in patients with ALK-positive NSCLC compared with EGFR/KRAS-positive NSCLC. High expression of PD-L1 and CTLA4 was an adverse prognostic factor in advanced-stage ALK-rearranged NSCLC patients treated with ALK-TKIs. Immunotherapy for ALK-rearranged patients requires further exploration and validation by clinical trials.
Zhang B
,Zeng J
,Zhang H
,Zhu S
,Wang H
,He J
,Yang L
,Zhou N
,Zu L
,Xu X
,Song Z
,Xu S
... -
《Frontiers in Immunology》
-
Clinical relevance of PD-L1 expression and CD8+ T cells infiltration in patients with EGFR-mutated and ALK-rearranged lung cancer.
EGFR-mutated or ALK-rearranged non-small cell lung cancer (NSCLC) often showed unfavorable clinical benefit to checkpoint inhibitors (CPIs). However, few reports exist with integrated analysis, to interpret the underlying mechanism of poor response to PD-1/PD-L1 inhibitors. We have retrospectively analyzed the tumor microenvironment (TME) based on tumor PD-L1 expression and CD8+ T cells infiltration in patients with EGFR mutations and ALK rearrangements, and the prognostic value of TME subtypes on overall survival (OS).
Tumor samples from 715 patients with lung cancer were retrospectively collected at Guangdong Lung Cancer Institute. Tumoral PD-L1 expression (N = 715) and CD8+ T cells infiltration (N = 658) was determined by immunohistochemistry (IHC), based on which TME was categorized into four different subtypes: PD-L1+/CD8+, PD-L1-/CD8+, PD-L1+/CD8-, PD-L1-/CD8-. Proportion of four TME subtypes was determined, and overall survival with PD-L1 expression and TME was analyzed.
In patients with EGFR mutations or ALK rearrangements, proportion of PD-L1+/CD8+ tumors was the lowest (5.0%, 17/342), and that of PD-L1-/CD8- tumors was the highest (63.5%, 217/342). In patients with wild-type EGFR and ALK, 14.2% (45/316) tumors were PD-L1+/CD8+ and 50.3% (159/316) tumors were PD-L1-/CD8- (P < 0.001). Median OS of EGFR-mutated or ALK-rearranged lung cancer was 78.6 months in PD-L1 positive group and 93.4 months in PD-L1 negative group (HR 0.47, 95%CI 0.23-0.76, P = 0.005). PD-L1+/CD8+ group exhibited the shortest OS, with 44.3 months, but is likely to respond to CPIs. The PD-L1-/CD8+ group exhibited the longest OS but is unlikely to respond to CPIs.
Patients with EGFR mutations or ALK rearrangements exhibited lower PD-L1 and CD8 co-expression level in TME, which could be responsible for poor response to CPIs. PD-L1 and CD8 co-expression in EGFR-mutated or ALK-rearranged lung cancer is a biomarker for poor prognosis with shorter OS.
Liu SY
,Dong ZY
,Wu SP
,Xie Z
,Yan LX
,Li YF
,Yan HH
,Su J
,Yang JJ
,Zhou Q
,Zhong WZ
,Tu HY
,Yang XN
,Zhang XC
,Wu YL
... -
《-》
-
Molecular heterogeneity of anti-PD-1/PD-L1 immunotherapy efficacy is correlated with tumor immune microenvironment in East Asian patients with non-small cell lung cancer.
Objective: The aim of this study was to investigate how the tumor immune microenvironment differs regarding tumor genomics, as well as its impact on prognoses and responses to immunotherapy in East Asian patients with non-small cell lung cancer (NSCLC). Methods: We performed an integrated analysis using publicly available data to identify associations between anti-programmed death 1 (PD-1)/ programmed death-ligand 1 (PD-L1) immunotherapy efficacy and classic driver oncogene mutations in East Asian NSCLC patients. Four pooled and clinical cohort analyses were used to correlate driver oncogene mutation status and tumor microenvironment based on PD-L1 and CD8+ tumor-infiltrating lymphocytes (TILs). Immune infiltrating patterns were also established for genomic NSCLC subgroups using the CIBERSORT algorithm. Results: Based on East Asian NSCLC patients, TIDE analyses revealed that for anti-PD-1/PD-L1 immunotherapy, epidermal growth factor receptor (EGFR)-mutant and anaplastic lymphoma kinase (ALK)-rearranged tumors yielded inferior responses; however, although Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant tumors responded better, the difference was not statistically significant (EGFR: P = 0.037; ALK: P < 0.001; KRAS: P = 0.701). Pooled and clinical cohort analyses demonstrated tumor immune microenvironment heterogeneities correlated with oncogenic patterns. The results showed remarkably higher PD-L1- and TIL-positive KRAS-mutant tumors, suggesting KRAS mutations may drive an inflammatory phenotype with adaptive immune resistance. However, the EGFR-mutant or ALK-rearranged groups showed a remarkably higher proportion of PD-L1-/TIL-tumors, suggesting an uninflamed phenotype with immunological ignorance. Notably, similar to triple wild-type NSCLC tumors, EGFR L858R-mutant tumors positively correlated with an inflammatory phenotype, suggesting responsiveness to anti-PD-1/PD-L1 immunotherapy (P < 0.05). Furthermore, the CIBERSORT algorithm results revealed that EGFR-mutant and ALK-rearranged tumors were characterized by an enriched resting memory CD4+ T cell population (P < 0.001), as well as a lack of CD8+ T cells (P < 0.01), and activated memory CD4+ T cells (P = 0.001). Conclusions: Our study highlighted the complex relationships between immune heterogeneity and immunotherapeutic responses in East Asian NSCLC patients regarding oncogenic dependence.
Jin R
,Liu C
,Zheng S
,Wang X
,Feng X
,Li H
,Sun N
,He J
... -
《Cancer Biology & Medicine》
-
The prognostic role of PD-1, PD-L1, ALK, and ROS1 proteins expression in non-small cell lung carcinoma patients from Egypt.
Programmed death ligand-1 (PD-L1), anaplastic lymphoma kinase (ALK), and c-ros oncogene1 (ROS1) expression may influence the prognosis of non-small cell lung carcinoma (NSCLC). We aimed to investigate the prognostic and predictive significance of PD-1/PD-L1 along with c-ros ROS1 and ALK in NSCLC patients.
Immunohistochemistry used to identify ALK, ROS1, PD-1, and PD-L1 proteins expression as well as ROS1 rearrangement via fluorescence in situ hybridization, in 70 NSCLC patients. Results were related to clinicopathological feature, survival, and treatment response.
Expression of ROS1, ALK, PD-1, and PD-L1 and ROS1-rearrangement were detected in 18.57%, 54.29%, 84.29%, 87.14%, and 15.71% of the cases, respectively. No association was found between ROS1, PD-1, and PD-L1 and any clinicopathological features, survival, or treatment outcome. ALK expression significantly associated with stage-IV and left-sided tumors. Epidermal growth factor receptor (EGFR) mutation and ALK-positive patients had significantly reduced progression-free survival than patients with wild type EGFR [HR: 1.99, 95% CI: 1.37-2.93, p < 0.001] and negative-ALK expression [HR: 1.46, 95% CI: 1.03-2.07, p = 0.03]. In multivariate analysis, lymph node metastasis, EGFR-mutations, and ALK were independent predictors of NSCLC. PD-L1 expression was significantly correlated with PD-1 but not with ROS1, ALK, or EGFR-mutation.
Positive ALK expression and EGFR-mutations are independent adverse predictors of NSCLC. Overexpression of PD-1/PD-L1 is not a significant prognostic marker in NSCLC patients receiving chemotherapy, making them susceptible to immunotherapy. Since PD-1/PD-L1 expression is independent to oncogenic driver mutations, future studies into specific immune checkpoint inhibitors combined with targeted therapies for individualized treatment of NSCLC is warranted. Positive ALK expression and EGFR mutations are independent risk factors for NSCLC. Overexpression of PD-1/PD-L1 is not a significant prognostic factor in patients with NSCLC who are receiving chemotherapy, making them immunotherapy susceptible. Given that PD-1/PD-L1 expression is not dependent on oncogenic driver mutations, additional research into specific immune checkpoint inhibitors in combination with targeted therapies for the treatment of NSCLC on an individual basis is warranted.
Bahnassy AA
,Ismail H
,Mohanad M
,El-Bastawisy A
,Yousef HF
... -
《-》
-
Integration of comprehensive genomic profiling, tumor mutational burden, and PD-L1 expression to identify novel biomarkers of immunotherapy in non-small cell lung cancer.
This study aimed to explore the novel biomarkers for immune checkpoint inhibitor (ICI) responses in non-small cell lung cancer (NSCLC) by integrating genomic profiling, tumor mutational burden (TMB), and expression of programmed death receptor 1 ligand (PD-L1).
Tumor and blood samples from 637 Chinese patients with NSCLC were collected for targeted panel sequencing. Genomic alterations, including single nucleotide variations, insertions/deletions, copy number variations, and gene rearrangements, were assessed and TMB was computed. TMB-high (TMB-H) was defined as ≥10 mutations/Mb. PD-L1 positivity was defined as ≥1% tumor cells with membranous staining. Genomic data and ICI outcomes of 240 patients with NSCLC were derived from cBioPortal.
EGFR-sensitizing mutations, ALK, RET, and ROS1 rearrangements were associated with lower TMB and PD-L1+/TMB-H proportions, whereas KRAS, ALK, RET, and ROS1 substitutions/indels correlated with higher TMB and PD-L1+/TMB-H proportions than wild-type genotypes. Histone-lysine N-methyltransferase 2 (KMT2) family members (KMT2A, KMT2C, and KMT2D) were frequently mutated in NSCLC tumors, and these mutations were associated with higher TMB and PD-L1 expression, as well as higher PD-L1+/TMB-H proportions. Specifically, patients with KMT2C mutations had higher TMB and PD-L1+/TMB-H proportions than wild-type patients. The median progression-free survival (PFS) was 5.47 months (95% CI 2.5-NA) in patients with KMT2C mutations versus 3.17 months (95% CI 2.6-4.27) in wild-type patients (p = 0.058). Furthermore, in patients with NSCLC who underwent ICI treatment, patients with TP53/KMT2C co-mutations had significantly longer PFS and greater durable clinical benefit (HR: 0.48, 95% CI: 0.24-0.94, p = 0.033). TP53 mutation combined with KMT2C or KRAS mutation was a better biomarker with expanded population benefit from ICIs therapy and increased the predictive power (HR: 0.46, 95% CI: 0.26-0.81, p = 0.007).
We found that tumors with different alterations in actionable target genes had variable expression of PD-L1 and TMB in NSCLC. TP53/KMT2C co-mutation might serve as a predictive biomarker for ICI responses in NSCLC.
Cancer immunotherapies, especially immune checkpoint inhibitors (ICIs), have revolutionized the treatment of non-small cell lung cancer (NSCLC); however, only a proportion of patients derive durable responses to this treatment. Biomarkers with greater accuracy are highly needed. In total, 637 Chinese patients with NSCLC were analyzed using next-generation sequencing and IHC to characterize the unique features of genomic alterations and TMB and PD-L1 expression. Our study demonstrated that KMT2C/TP53 co-mutation might be an accurate, cost-effective, and reliable biomarker to predict responses to PD-1 blockade therapy in NSCLC patients and that adding KRAS to the biomarker combination creates a more robust parameter to identify the best responders to ICI therapy.
Shi Y
,Lei Y
,Liu L
,Zhang S
,Wang W
,Zhao J
,Zhao S
,Dong X
,Yao M
,Wang K
,Zhou Q
... -
《Cancer Medicine》