In silico characterization of IncX3 plasmids carrying bla (OXA-181) in Enterobacterales.
摘要:
Carbapenem-resistant Enterobacterales poses a global urgent antibiotic resistance threat because of its ability to transfer carbapenemase genes to other bacteria via horizontal gene transfer mediated by mobile genetic elements such as plasmids. Oxacillinase-181 (OXA-181) is one of the most common OXA-48-like carbapenemases, and OXA-181-producing Enterobacterales has been reported in many countries worldwide. However, systematic research concerning the overall picture of plasmids harboring bla OXA-181 in Enterobacterales is currently scarce. In this study, we aimed to determine the phylogeny and evolution of bla OXA-181-positive (gene encoding OXA-181) plasmids. To characterize the plasmids harboring bla OXA-181 in Enterobacterales, we identified 81 bla OXA-181-positive plasmids from 35,150 bacterial plasmids downloaded from the NCBI RefSeq database. Our results indicated that diverse plasmid types harbored bla OXA-181 but was predominantly carried by IncX3-type plasmids. We systematically compared the host strains, plasmid types, conjugative transfer regions, and genetic contexts of bla OXA-181 among the 66 bla OXA-181-positive IncX3 plasmids. We found that IncX3 plasmids harboring bla OXA-181 were mostly ColKP3-IncX3 hybrid plasmids with a length of 51 kb each and were mainly distributed in Escherichia coli and Klebsiella pneumoniae. Most of the IncX3 plasmids harboring bla OXA-181 were human origin. Almost all the bla OXA-181-positive IncX3 plasmids were found to carry genes coding for relaxases of the MOBP family and VirB-like type IV secretion system (T4SS) gene clusters, and all the 66 IncX3 plasmids were found to carry the genes encoding type IV coupling proteins (T4CPs) of the VirD4/TraG subfamily. Most IncX3 plasmids harbored both bla OXA-181 and qnrS1 in their genomes, and the two antibiotic resistance genes were found to a composite transposon bracketed by two copies of insertion sequence IS26 in the same orientation. Our findings provide important insights into the phylogeny and evolution of bla OXA-181-positive IncX3 plasmids and further address their role in acquiring and spreading bla OXA-181 genes in Enterobacterales.
收起
展开
DOI:
10.3389/fcimb.2022.988236
被引量:
年份:
1970


通过 文献互助 平台发起求助,成功后即可免费获取论文全文。
求助方法1:
知识发现用户
每天可免费求助50篇
求助方法1:
关注微信公众号
每天可免费求助2篇
求助方法2:
完成求助需要支付5财富值
您目前有 1000 财富值
相似文献(168)
参考文献(44)
引证文献(4)
来源期刊
影响因子:6.067
JCR分区: 暂无
中科院分区:暂无