Humoral immunity induced by mRNA COVID-19 vaccines in Nursing Home Residents previously infected with SARS-CoV-2.
Nursing home (NH) residents suffered the greatest impact of the COVID-19 pandemic. Limited data are available on vaccine-induced immunity and on the protection ensured by a prior infection in this population.
The present study aims to monitor antibody levels and their persistence over a 6-month period in NH residents according to the history of prior SARS-CoV-2 infection.
We measured anti-trimeric Spike IgG antibody levels in a sample of 395 residents from 25 NHs in 6 Italian Regions at study enrolment (prior to the first dose of vaccine, T0) and then after 2 (T1) and 6 months (T2) following the first vaccine dose. All participants received mRNA vaccines (BNT162b2 or mRNA-1273). Analyses were performed using log-transformed values of antibody concentrations and geometric means (GM) were calculated.
Superior humoral immunity was induced in NH residents with previous SARS-CoV-2 infection. (T0: GM 186.6 vs. 6.1 BAU/ml, p < 0.001; T1: GM 5264.1 vs. 944.4 BAU/ml, p < 0.001; T2: GM 1473.6 vs. 128.7 BAU/ml, p < 0.001). Residents with prior SARS-CoV-2 infection receiving two vaccine doses presented significantly higher antibody concentration at T1 and T2. A longer interval between previous infection and vaccination was associated with a better antibody response over time.
In a frail sample of NH residents, prior SARS-CoV-2 infection was associated with a higher humoral response to vaccination. Number of vaccine doses and the interval between infection and vaccination are relevant parameters in determining humoral immunity.
These findings provide important information to plan future immunization policies and disease prevention strategies in a highly vulnerable population.
Fedele G
,Palmieri A
,Damiano C
,Di Lonardo A
,Leone P
,Schiavoni I
,Trevisan C
,Abbatecola AM
,Cafariello C
,Malara A
,Minchella P
,Panduri G
,Antonelli Incalzi R
,Palamara AT
,Stefanelli P
,Onder G
,GeroCovid Vax Study Group
... -
《-》
T-Cell Mediated Response after Primary and Booster SARS-CoV-2 Messenger RNA Vaccination in Nursing Home Residents.
Nursing home (NH) residents have been significantly affected by the coronavirus disease 2019 (COVID-19) pandemic. Studies addressing the immune responses induced by COVID-19 vaccines in NH residents have documented a good postvaccination antibody response and the beneficial effect of a third booster vaccine dose. Less is known about vaccine-induced activation of cell-mediated immune response in frail older individuals in the long term. The aim of the present study is to monitor messenger RNA SARS-CoV-2 vaccine-induced T-cell responses in a sample of Italian NH residents who received primary vaccine series and a third booster dose and to assess the interaction between T-cell responses and humoral immunity.
Longitudinal cohort study.
Thirty-four residents vaccinated with BNT162b2 messenger RNA SARS-CoV-2 vaccine between February and April 2021 and who received a third BNT162b2 booster dose between October and November 2021 were assessed for vaccine-induced immunity 6 (prebooster) and 12 (postbooster) months after the first BNT162b2 vaccine dose.
Pre- and postbooster cell-mediated immunity was assessed by intracellular cytokine staining of peripheral blood mononuclear cells stimulated in vitro with peptides covering the immunodominant sequence of SARS-CoV-2 spike protein. The simultaneous production of interferon-γ, tumor necrosis factor-α, and interleukin-2 was measured. Humoral immunity was assessed in parallel by measuring serum concentration of antitrimeric spike IgG antibodies.
Before the booster vaccination, 31 out of 34 NH residents had a positive cell-mediated immunity response to spike. Postbooster, 28 out of 34 had a positive response. Residents without a previous history of SARS-CoV-2 infection, who had a lower response prior the booster administration, showed a greater increase of T-cell responses after the vaccine booster dose. Humoral and cell-mediated immunity were, in part, correlated but only before booster vaccine administration.
The administration of the booster vaccine dose restored spike-specific T-cell responses in SARS-CoV-2 naïve residents who responded poorly to the first immunization, while a previous SARS-CoV-2 infection had an impact on the magnitude of vaccine-induced cell-mediated immunity at earlier time points. Our findings imply the need for a continuous monitoring of the immune status of frail NH residents to adapt future SARS-CoV-2 vaccination strategies.
Schiavoni I
,Palmieri A
,Olivetta E
,Leone P
,Di Lonardo A
,Mazzoli A
,Cafariello C
,Malara A
,Palamara AT
,Incalzi RA
,Onder G
,Stefanelli P
,Fedele G
,GeroCovid Vax CMI Study Group
... -
《-》
Real-world serological responses to extended-interval and heterologous COVID-19 mRNA vaccination in frail, older people (UNCoVER): an interim report from a prospective observational cohort study.
The use of COVID-19 vaccines has been prioritised to protect the most vulnerable-notably, older people. Because of fluctuations in vaccine availability, strategies such as delayed second dose and heterologous prime-boost have been used. However, the effectiveness of these strategies in frail, older people are unknown. We aimed to assess the antigenicity of mRNA-based COVID-19 vaccines in frail, older people in a real-world setting, with a rationed interval dosing of 16 weeks between the prime and boost doses.
This prospective observational cohort study was done across 12 long-term care facilities of the Montréal Centre-Sud - Integrated University Health and Social Services Centre in Montréal, Québec, Canada. Under a rationing strategy mandated by the provincial government, adults aged 65 years and older residing in long-term care facilities in Québec, Canada, with or without previously documented SARS-CoV-2 infection, were administered homologous or heterologous mRNA vaccines, with an extended 16-week interval between doses. All older residents in participating long-term care facilities who received two vaccine doses were eligible for inclusion in this study. Participants were enrolled from Dec 31, 2020, to Feb 16, 2021, and data were collected up to June 9, 2021. Clinical data and blood samples were serially collected from participants at the following timepoints: at baseline, before the first dose; 4 weeks after the first dose; 6-10 weeks after the first dose; 16 weeks after the first dose, up to 2 days before administration of the second dose; and 4 weeks after the second dose. Sera were tested for SARS-CoV-2-specific IgG antibodies (to the trimeric spike protein, the receptor-binding domain [RBD] of the spike protein, and the nucleocapsid protein) by automated chemiluminescent ELISA. Two cohorts were used in this study: a discovery cohort, for which blood samples were collected before administration of the first vaccine dose and longitudinally thereafter; and a confirmatory cohort, for which blood samples were only collected from 4 weeks after the prime dose. Analyses were done in the discovery cohort, with validation in the confirmatory cohort, when applicable.
The total study sample consisted of 185 participants. 65 participants received two doses of mRNA-1273 (Spikevax; Moderna), 36 received two doses of BNT162b2 (Comirnaty; Pfizer-BioNTech), and 84 received mRNA-1273 followed by BNT162b2. In the discovery cohort, after a significant increase in anti-RBD and anti-spike IgG concentrations 4 weeks after the prime dose (from 4·86 log binding antibody units [BAU]/mL to 8·53 log BAU/mL for anti-RBD IgG and from 5·21 log BAU/mL to 8·05 log BAU/mL for anti-spike IgG), there was a significant decline in anti-RBD and anti-spike IgG concentrations until the boost dose (7·10 log BAU/mL for anti-RBD IgG and 7·60 log BAU/mL for anti-spike IgG), followed by an increase 4 weeks later for both vaccines (9·58 log BAU/mL for anti-RBD IgG and 9·23 log BAU/mL for anti-spike IgG). SARS-CoV-2-naive individuals showed lower antibody responses than previously infected individuals at all timepoints tested up to 16 weeks after the prime dose, but achieved similar antibody responses to previously infected participants by 4 weeks after the second dose. Individuals primed with the BNT162b2 vaccine showed a larger decrease in mean anti-RBD and anti-spike IgG concentrations with a 16-week interval between doses (from 8·12 log BAU/mL to 4·25 log BAU/mL for anti-RBD IgG responses and from 8·18 log BAU/mL to 6·66 log BAU/mL for anti-spike IgG responses) than did those who received the mRNA-1273 vaccine (two doses of mRNA-1273: from 8·06 log BAU/mL to 7·49 log BAU/mL for anti-RBD IgG responses and from 6·82 log BAU/mL to 7·56 log BAU/mL for anti-spike IgG responses; mRNA-1273 followed by BNT162b2: from 8·83 log BAU/mL to 7·95 log BAU/mL for anti-RBD IgG responses and from 8·50 log BAU/mL to 7·97 log BAU/mL for anti-spike IgG responses). No differences in antibody responses 4 weeks after the second dose were noted between the two vaccines, in either homologous or heterologous combinations.
Interim results of this ongoing longitudinal study show that among frail, older people, previous SARS-CoV-2 infection and the type of mRNA vaccine influenced antibody responses when used with a 16-week interval between doses. In these cohorts of frail, older individuals with a similar age and comorbidity distribution, we found that serological responses were similar and clinically equivalent between the discovery and confirmatory cohorts. Homologous and heterologous use of mRNA vaccines was not associated with significant differences in antibody responses 4 weeks following the second dose, supporting their interchangeability.
Public Health Agency of Canada, Vaccine Surveillance Reference Group; and the COVID-19 Immunity Task Force.
For the French translation of the abstract see Supplementary Materials section.
Vinh DC
,Gouin JP
,Cruz-Santiago D
,Canac-Marquis M
,Bernier S
,Bobeuf F
,Sengupta A
,Brassard JP
,Guerra A
,Dziarmaga R
,Perez A
,Sun Y
,Li Y
,Roussel L
,Langelier MJ
,Ke D
,Arnold C
,Whelan M
,Pelchat M
,Langlois MA
,Zhang X
,Mazer BD
,COVID-19 Immunity Task Force and UNCoVER Investigators
... -
《The Lancet Healthy Longevity》
Strong Decay of SARS-CoV-2 Spike Antibodies after 2 BNT162b2 Vaccine Doses and High Antibody Response to a Third Dose in Nursing Home Residents.
To measure the antibody decay after 2 BNT162b2 doses and the antibody response after a third vaccine dose administered 6 months after the second one in nursing home residents with and without prior COVID-19.
Cohort study.
Four hundred-eighteen residents from 18 nursing homes.
Blood receptor-binding domain (RBD)-IgG (IgG II Quant assay, Abbott Diagnostics; upper limit: 5680 BAU) and nucleocapsid-IgG (Abbott Alinity) were measured 21‒28 days after the second BNT162b2 dose, as well as 1‒3 days before and 21‒28 days after the third vaccine dose. RBD-IgG levels of ≥592 BAU/mL were considered as high antibody response. Residents with prior positive quantitative reverse transcription polymerase chain reaction on a nasopharyngeal swab or with N-IgG levels above 0.8 S/CO were considered as prior COVID-19 residents.
In prior COVID-19 residents (n = 122), RBD-IgG median levels decreased by 82% in 167 days on average. In the same period, the number of residents with a high antibody response decreased from 88.5% to 54.9% (P < .0001) and increased to 97.5% after the third vaccine dose (P = .02 vs the first measure). In residents without prior COVID-19 (n = 296), RBD-IgG median levels decreased by 89% in 171 days on average. The number of residents with a high antibody response decreased from 29.4% to 1.7% (P < .0001) and increased to 88.4% after the third vaccine dose (P < .0001 vs the first measure).
The strong and rapid decay of RBD-IgG levels after the second BNT162b2 dose in all residents and the high antibody response after the third dose validate the recommendation of a third vaccine dose in residents less than 6 months after the second dose, prioritizing residents without prior COVID-19. The slope of RBD-IgG decay after the third BNT162b2 dose and the protection level against SARS-CoV-2 B.1.1.529 (omicron) and other variants of concern provided by the high post-boost vaccination RBD-IgG response require further investigation in residents.
Blain H
,Tuaillon E
,Gamon L
,Pisoni A
,Miot S
,Picot MC
... -
《-》