Identification and characterization of forced degradation products of sertraline hydrochloride using UPLC, ultra-high-performance liquid Chromatography-Quadrupole-Time of flight mass spectrometry (UHPLC-Q-TOF/MS/MS) and NMR.

来自 PUBMED

作者:

Grover PBhardwaj MMukherjee D

展开

摘要:

The present study focused on the forced degradation behavior of sertraline hydrochloride (SRT), selective serotonin reuptake inhibitor (SSRI). The drug was exposed to different stressed conditions (hydrolytic, oxidative, thermal and photolytic) according to ICH Q1A (R2) guidelines. The study revealed that SRT was stable in hydrolytic (acidic, basic and neutral) and thermal degradation conditions. In contrast, five degradation products (DPs) were formed under oxidative and photolytic degradation conditions. The chromatographic separation of drug substance and its DPs was achieved on an Acquity HSS T3 column (100 × 2.1 mm, 1.7 μ) using 0.1% formic acid and acetonitrile as the mobile phase in gradient mode using a UHPLC-DAD system. The DPs were identified and characterized by high-resolution LC/MS and LC/MS/MS in ESI positive mode. Two DPs (DP-I and DP-II) were formed when SRT was exposed to oxidative degradation conditions. Three DPs formed (DP III-V) when exposed to photolytic degradation conditions. All the five major DPs were isolated using Preparative HPLC. The structures of major DPs formed were further confirmed using NMR technique (1D and 2D). The proposed mechanism for the formation of the SRT DPs via the photolytic/oxidative stress degradation pathway are discussed and outlined.

收起

展开

DOI:

10.1016/j.jpba.2022.115045

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(194)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读