Land use and land cover dynamics and ecosystem services values in Kewet district in the central dry lowlands of Ethiopia.
A better comprehensive and quantitative analysis of the tempo-spatial dynamics of land use and cover (LULC) in the dry lowlands areas of Ethiopia is crucial for restoring degraded landscapes. This study aimed at analyzing the trends of LULC changes and determine their ecosystem service values in Kewet district central dry lowlands of Ethiopia using multi-temporal satellite imagery for three periods: 1995, 2008, and 2017. Supervised classification, using the maximum likelihood classifier, was applied to quantify LULC changes. Ecosystem Service values were estimated using the modified ecosystem service value coefficients. LULC analysis showed that cultivated land was the most predominant which covered over 41% of the study area in all three periods. Forests showed a net increase of 18.2%. Shrubland occupied the second largest portion in all LULC analysis next to cultivated land, and it showed a net decrease of 29.2%. Open grassland showed a periodic increase. Over the past 20 years, built-up area and bared land grew continuously by 1.80 and 1.01 km2 yr-1, respectively. However, some degraded land was converted into woody vegetation land through area exclosure, which improved the vegetation coverage of the study area. Ecosystem Service values ranged from US$ 2.37 million for shrubland in 1995 to US$ 22.49 million for forest land in 2008. The total ESVs of the district also continuously decreased over the past two decades. Generally, the LULC in the Kewet district has been dynamic in that some of the LULC classes were expanding, while the others were shrinking through time.
Tesfay F
,Kibret K
,Gebrekirstos A
,Hadgu KM
... -
《-》
Implications of land use/land cover dynamics and Prosopis invasion on ecosystem service values in Afar Region, Ethiopia.
Land use/land cover (LULC) dynamics and the resulting changes in ecosystems, as well as the services they provide, are a consequence of human activities and environmental drivers, such as invasive alien plant species. This study assessed the changes in LULC and ecosystem service values (ESVs) in the Afar National Regional State, Ethiopia, which experiences a rapid invasion by the alien tree Prosopis juliflora (Swartz DC). Landsat satellite data of 1986, 2000 and 2017 were used in Random Forest algorithm to assess LULC changes in the last 31 years, to calculate net changes for different LULC types and the associated changes in ESVs. Kappa accuracies of 88% and higher were obtained for the three LULC classifications. Post-classification change analyses for the period between 1986 and 2017 revealed a positive net change for Prosopis invaded areas, cropland, salt flats, settlements and waterbodies. The rate of Prosopis invasion was estimated at 31,127 ha per year. Negative net changes were found for grassland, bareland, bush-shrub-woodland, and natural forests. According to the local community representatives, the four most important drivers of LULC dynamics were climate change, frequent droughts, invasive species and weak traditional law. Based on two different ESVs estimations, the ecosystem changes caused by LULC changes resulted in an average loss of ESVs in the study area of about US$ 602 million (range US$ 112 to 1091 million) over the last 31 years. With an increase in area by 965,000 ha, Prosopis-invaded land was the highest net change during the study period, followed by grassland (-599,000 ha), bareland (-329,000 ha) and bush-shrub-woodland (-327,000 ha). Our study provides evidence that LULC changes in the Afar Region have led to a significant loss in ESVs, with serious consequences for the livelihoods of the rural people.
Shiferaw H
,Bewket W
,Alamirew T
,Zeleke G
,Teketay D
,Bekele K
,Schaffner U
,Eckert S
... -
《-》
Analyses of LULC dynamics in a socio-ecological system of the Bale Mountains Eco Region of Southeast Ethiopia.
Analysis of land use and land cover (LULC) change and its drivers and impacts in the biodiversity hotspot of Bale Mountain's socio-ecological system is crucial for formulating plausible policies and strategies that can enhance sustainable development. The study aimed to analyze spatio-temporal LULC changes and their trends, extents, drives, and impacts over the last 48 years in the Bale Mountain social-ecological system. Landsat imagery data from the years 1973, 1986, 1996, 2014, and 2021 together with qualitative data were used. LULC classification scheme employed a supervised classification method with the application of the maximum likelihood algorithm technique. In the period between 1973 and 2021, agriculture, bare land, and settlement showed areal increment by 153.13%, 295.57%, and 49.03% with the corresponding increased annual rate of 1.93%, 2.86%, and 0.83%, respectively. On the contrary, forest, wood land, bushland, grass land, and water body decreased by 29.97%, 1.36%, 28.16%, 8.63%, and 84.36% during the study period, respectively. During the period, major LULC change dynamics were also observed; the majority of woodland was converted to agriculture (757.8 km2) and grassland (531.3 km2); and forests were converted to other LULC classes, namely woodland (766.5 km2), agriculture (706.1 km2), grassland (34.6 km2), bushland (31.9 km2), settlement (20.5 km2), and bare land (14.3 km2). LULC changes were caused by the expansion of agriculture, settlement, overgrazing, infrastructure development, and fire that were driven by population growth and climate change, and supplemented by inadequate policy and institutional factors. Social and environmental importance and values of land uses and land covers in the study area necessitate further assessment of potential natural resources' user groups and valuation of ecosystem services in the study area. Hence, we suggest the identification of potential natural resource-based user groups, and assessment of the influence of LULC changes on ecosystem services in Bale Mountains Eco Region (BMER) for the sustainable use and managements of land resources.
Ayana B
,Senbeta F
,Seyoum A
《-》
Land use and land cover changes and their impact on ecosystem service values in the north-eastern highlands of Ethiopia.
The land use and land cover (LULC) changes driven by the growing demands of mankind have a considerable effect on ecosystem services and functions. The study was carried out in the north-eastern highlands of Ethiopia to (1) analyze the effect of LULC changes between 1984 and 2021 and (2) assess the spatiotemporal variations in ecosystem service values (ESVs) and elasticity in response to LULC changes. Using Landsat imageries from 1984 to 2021, the spatiotemporal changes in LULC were evaluated with supervised image classification using maximum likelihood algorithm in ArcGIS software. Six LULC types were subsequently categorized, with overall accuracy and Kappa coefficients above 87% and 0.87, respectively. The ESVs were then estimated based on the Benefit Value Transfer (BVT) approach employing modified conservative value coefficients. The findings revealed a significant increase in cultivated land (9759.1ha) and built-up area (10174.41ha) during the stipulated periods and a drop in other land use types. The forest loss gradually decreased from 4.1% in the second period (1991-2001) to 0.58% in the third (2001-2021), compared to the first of the 1.1% conversion rates. Similarly, the proportion of grassland and water bodies steadily reduced over the stipulated periods, by 1.15% and 2.3% per annum, respectively. The overall loss of ESVs in the study landscape was estimated to be 54.4 million US$ (67.3%), drastically decreasing from 80.3 million US$ in 1984 to 26.4 million US$ in 2021, driven by the declining area coverage of water bodies, grassland, and forestland. Regardless of the loss, the ecosystem functions of hydrological regulation (37.2, 35.0, 6.1, and 5.1 US$ ha-1yr-1), water supply (14.5, 13.6, 2.4, and 2 US$ ha-1yr-1), and food production (9.8, 10.0, 9.1, and 9.9 US$ ha-1yr-1) contributed the most to the total ESV of each year while disturbance regulation and cultural values were the least throughout the study periods. The coefficient of sensitivity (CS) analysis revealed that our estimates were relatively robust. The findings further showed that human-dominated land-uses at the expense of natural ecosystems are the primary drivers of LULC transitions and the ensuing loss of ecosystem services in the region. Thus, this calls for intensive work on more effective land use policies that encourage an integrated management approach, with a focus on safeguarding the sustainability of natural ecosystems.
Muche M
,Yemata G
,Molla E
,Adnew W
,Muasya AM
... -
《PLoS One》