Targeted co-delivery of a photosensitizer and an antisense oligonucleotide based on an activatable hyaluronic acid nanosystem with endogenous oxygen generation for enhanced photodynamic therapy of hypoxic tumors.

来自 PUBMED

作者:

Wu YDing LZheng CLi HWu MSun YLiu XZhang XZeng Y

展开

摘要:

Photodynamic therapy (PDT) is a promising cancer treatment modality with advantages of minimal invasiveness, repeatable therapy, and mild systemic toxicity. However, the limited bioavailability of photosensitizer (PS), tumor hypoxia, and the presence of antiapoptotic proteins in cancer cells, has hampered the efficiency of PDT. To address these limitations, herein, we developed a hyaluronic acid (HA) based nanosystem (HA-Ce6-Hemin@DNA-Protamine NPs, HCH@DP) loaded with chlorin e6 (Ce6, as PS), hemin (as mimetic catalase) and antisense oligonucleotide (ASO) of B-cell lymphoma 2 (Bcl-2) anti-apoptosis protein via a simple electrostatic self-assembly method for enhanced PDT of hypoxic solid tumors. The HCH@DP can target deliver the PS and ASO to tumor cells via cancer cell overexpressed HA receptors (i.e., CD44 or RHAMM). The Ce6 was released from HA-ss-Ce6 (HSC conjugates) after the reaction of cleavable disulfide bond with glutathione (GSH), which recovered the fluorescence and phototoxicity of Ce6 upon laser irradiation. Meanwhile, the catalase-mimicking hemin (degradation of HA-eda-hemin by hyaluronidase) decomposed the tumor overdressed endogenous H2O2 to oxygen, which relieved tumor hypoxia and further overcome hypoxia-associated resistance of PDT. Furthermore, the inhibition of Bcl-2 expression by Bcl-2 ASO also greatly improved the cellular sensitivity to PDT. Both in vitro and in vivo results showed the tumor cell targeting ability, hypoxia relief and significantly enhanced antitumor PDT efficacy of HCH@DP for hypoxic tumor cells upon laser irradiation. Thus, by improving the target delivery of PS and ASO, relieving tumor hypoxia, and down-regulation of anti-apoptotic proteins, this HCH@DP nanosystem achieved enhanced PDT efficiency against hypoxic tumors. In general, our work provided a promising strategy to increase the utilization of key components (PS and oxygen) of PDT and the cell sensitivity to PDT by targeting co-delivery PS and oligonucleotides to tumor cells via a biocompatible HA based carrier, thereby achieving efficiently PDT treatment of hypoxic solid tumors with potential translation possibility. STATEMENT OF SIGNIFICANCE: The efficiency of PDT against solid tumor is severely restricted by the limited bioavailability of photosensitizer, tumor hypoxia, and the presence of antiapoptotic proteins in cancer cells. Herein, we have developed an activatable hyaluronic acid (HA) based nanosystem (HA-Ce6-Hemin@DNA-Protamine NPs, HCH@DP) via a simple electrostatic self-assembly method for PDT treatment of hypoxic solid tumors. The HCH@DP enabled to target co-delivery of photosensitizer and antisense oligonucleotide to tumor cells, overcoming tumor hypoxia through in situ oxygen production and improving cellular sensitivity by efficiently reducing anti-apoptosis effect of cancer cells for synergistically enhancing PDT efficiency. This work suggests a promising strategy to develop small molecule drug and oligonucleotides co-delivery nanoplatforms for efficiently PDT treatment of hypoxic solid tumor.

收起

展开

DOI:

10.1016/j.actbio.2022.09.025

被引量:

4

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(1278)

参考文献(0)

引证文献(4)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读