-
A novel multifunctional haplotyping-based preimplantation genetic testing for different genetic conditions.
Is there an efficient and cost-effective detection platform for different genetic conditions about embryos?
A multifunctional haplotyping-based preimplantation genetic testing platform was provided for detecting different genetic conditions.
Genetic disease and chromosomal rearrangement have been known to significantly impact fertility and development. Therefore, preimplantation genetic testing for aneuploidy (PGT-A), monogenic disorders (PGT-M) and structural rearrangements (PGT-SR), a part of ART, has been presented together to minimize the fetal genetic risk and increase pregnancy rate. For patients or their families who are suffering from chromosome abnormality, monogenic disease, unexplained repeated spontaneous abortion or implantation failure, after accepting genetic counseling, they may be suggested to accept detection from more than one PGT platforms about the embryos to avoid some genetic diseases. However, PGT platforms work through different workflows. The high costliness, lack of material and long-time operation of combined PGT platforms limit their application.
All 188 embryonic samples from 43 families were tested with HaploPGT platform, and most of their genetic abnormalities had been determined by different conventional PGT methods beforehand. Among them, there were 12 families only carrying structural rearrangements (115 embryos) in which 9 families accepted implantation and 5 families had normal labor ART outcomes, 7 families only carrying monogenic diseases (26 embryos) and 3 families carrying both structural rearrangements and monogenic diseases (26 embryos). Twelve monopronucleated zygotes (1PN) samples and 9 suspected triploid samples were collected from 21 families.
Here, we raised a comprehensive PGT method called HaploPGT, combining reduced representation genome sequencing, read-count analysis, B allele frequency and haplotyping analysis, to simultaneously detect different genetic disorders in one single test.
With 80 million reads (80M) genomic data, the proportion of windows (1 million base pairs (Mb)) containing two or more informative single nucleotide polymorphism (SNP) sites was 97.81%, meanwhile the genotyping error rate stabilized at a low level (2.19%). Furthermore, the informative SNPs were equally distributed across the genome, and whole-genomic haplotyping was established. Therefore, 80M was chosen to balance the cost and accuracy in HaploPGT. HaploPGT was able to identify abnormal embryos with triploid, global and partial loss of heterozygosity, and even to distinguish parental origin of copy number variation in mosaic and non-mosaic embryos. Besides, by retrospectively analyzing 188 embryonic samples from 43 families, HaploPGT revealed 100% concordance with the available results obtained from reference methods, including PGT-A, PGT-M, PGT-SR and PGT-HLA.
Despite the numerous benefits HaploPGT could bring, it still required additional family members to deduce the parental haplotype for identifying balanced translocation and monogenic mutation in tested embryos. In terms of PGT-SR, the additional family member could be a reference embryo with unbalanced translocation. For PGT-M, a proband was normally required. In both cases, genomic information from grandparents or parental siblings might help for haplotyping theoretically. Another restriction was that haploid, and diploid resulting from the duplication of a haploid, could not be told apart by HaploPGT, but it was able to recognize partial loss of heterozygosity in the embryonic genome. In addition, it should be noted that the location of rearrangement breakpoints and the situation of mutation sites were complicated, which meant that partial genetic disorders might not be completely detected.
HaploPGT is an efficient and cost-effective detection platform with high clinical value for detecting genetic status. This platform could promote the application of PGT in ART, to increase pregnancy rate and decrease the birth of children with genetic diseases.
This study was supported by grants from the National Natural Science Foundation of China (81873478, to L.H.), National Key R&D Program of China (2018YFC1003100, to L.H.), the Natural Science Foundation of Hunan Province (Grant 2022JJ30414, to P.X.), Hunan Provincial Grant for Innovative Province Construction (2019SK4012) and the Scientific Research Foundation of Reproductive and Genetic Hospital of China International Trust & Investment Corporation (CITIC)-Xiangya (YNXM-201910). Haplotyping analysis has been licensed to Basecare Co., Ltd. L.K., Y.M., K.K., D.Z., N.L., J.Z. and R.D. are Basecare Co., Ltd employees. The other authors declare no competing interests.
N/A.
Xie P
,Hu X
,Kong L
,Mao Y
,Cheng D
,Kang K
,Dai J
,Zhao D
,Zhang Y
,Lu N
,Wan Z
,Du R
,Xiong B
,Zhang J
,Tan Y
,Lu G
,Gong F
,Lin G
,Liang B
,Du J
,Hu L
... -
《-》
-
Comprehensive preimplantation genetic testing by massively parallel sequencing.
Can whole genome sequencing (WGS) offer a relatively cost-effective approach for embryonic genome-wide haplotyping and preimplantation genetic testing (PGT) for monogenic disorders (PGT-M), aneuploidy (PGT-A) and structural rearrangements (PGT-SR)?
Reliable genome-wide haplotyping, PGT-M, PGT-A and PGT-SR could be performed by WGS with 10× depth of parental and 4× depth of embryonic sequencing data.
Reduced representation genome sequencing with a genome-wide next-generation sequencing haplarithmisis-based solution has been verified as a generic approach for automated haplotyping and comprehensive PGT. Several low-depth massively parallel sequencing (MPS)-based methods for haplotyping and comprehensive PGT have been developed. However, an additional family member, such as a sibling, or a proband, is required for PGT-M haplotyping using low-depth MPS methods.
In this study, 10 families that had undergone traditional IVF-PGT and 53 embryos, including 13 embryos from two PGT-SR families and 40 embryos from eight PGT-M families, were included to evaluate a WGS-based method. There were 24 blastomeres and 29 blastocysts in total. All embryos were used for PGT-A. Karyomapping validated the WGS results. Clinical outcomes of the 10 families were evaluated.
A blastomere or a few trophectoderm cells from the blastocyst were biopsied, and multiple displacement amplification (MDA) was performed. MDA DNA and bulk DNA of family members were used for library construction. Libraries were sequenced, and data analysis, including haplotype inheritance deduction for PGT-M and PGT-SR and read-count analysis for PGT-A, was performed using an in-house pipeline. Haplotyping with a proband and parent-only haplotyping without additional family members were performed to assess the WGS methodology. Concordance analysis between the WGS results and traditional PGT methods was performed.
For the 40 PGT-M and 53 PGT-A embryos, 100% concordance between the WGS and single-nucleotide polymorphism (SNP)-array results was observed, regardless of whether additional family members or a proband was included for PGT-M haplotyping. For the 13 embryos from the two PGT-SR families, the embryonic balanced translocation was detected and 100% concordance between WGS and MicroSeq with PCR-seq was demonstrated.
The number of samples in this study was limited. In some cases, the reference embryo for PGT-M or PGT-SR parent-only haplotyping was not available owing to failed direct genotyping.
WGS-based PGT-A, PGT-M and PGT-SR offered a comprehensive PGT approach for haplotyping without the requirement for additional family members. It provided an improved complementary method to PGT methodologies, such as low-depth MPS- and SNP array-based methods.
This research was supported by the research grant from the National Key R&D Program of China (2018YFC0910201 and 2018YFC1004900), the Guangdong province science and technology project of China (2019B020226001), the Shenzhen Birth Defect Screening Project Lab (JZF No. [2016] 750) and the Shenzhen Municipal Government of China (JCYJ20170412152854656). This work was also supported by the National Natural Science Foundation of China (81771638, 81901495 and 81971344), the National Key R&D Program of China (2018YFC1004901 and 2016YFC0905103), the Shanghai Sailing Program (18YF1424800), the Shanghai Municipal Commission of Science and Technology Program (15411964000) and the Shanghai 'Rising Stars of Medical Talent' Youth Development Program Clinical Laboratory Practitioners Program (201972). The authors declare no competing interests.
N/A.
Chen S
,Yin X
,Zhang S
,Xia J
,Liu P
,Xie P
,Yan H
,Liang X
,Zhang J
,Chen Y
,Fei H
,Zhang L
,Hu Y
,Jiang H
,Lin G
,Chen F
,Xu C
... -
《-》
-
Multi-centre evaluation of a comprehensive preimplantation genetic test through haplotyping-by-sequencing.
Can reduced representation genome sequencing offer an alternative to single nucleotide polymorphism (SNP) arrays as a generic and genome-wide approach for comprehensive preimplantation genetic testing for monogenic disorders (PGT-M), aneuploidy (PGT-A) and structural rearrangements (PGT-SR) in human embryo biopsy samples?
Reduced representation genome sequencing, with OnePGT, offers a generic, next-generation sequencing-based approach for automated haplotyping and copy-number assessment, both combined or independently, in human single blastomere and trophectoderm samples.
Genome-wide haplotyping strategies, such as karyomapping and haplarithmisis, have paved the way for comprehensive PGT, i.e. leveraging PGT-M, PGT-A and PGT-SR in a single workflow. These methods are based upon SNP array technology.
This multi-centre verification study evaluated the concordance of PGT results for a total of 225 embryos, including 189 originally tested for a monogenic disorder and 36 tested for a translocation. Concordance for whole chromosome aneuploidies was also evaluated where whole genome copy-number reference data were available. Data analysts were kept blind to the results from the reference PGT method.
Leftover blastomere/trophectoderm whole genome amplified (WGA) material was used, or secondary trophectoderm biopsies were WGA. A reduced representation library from WGA DNA together with bulk DNA from phasing references was processed across two study sites with the Agilent OnePGT solution. Libraries were sequenced on an Illumina NextSeq500 system, and data were analysed with Agilent Alissa OnePGT software. The embedded PGT-M pipeline utilises the principles of haplarithmisis to deduce haplotype inheritance whereas both the PGT-A and PGT-SR pipelines are based upon read-count analysis in order to evaluate embryonic ploidy. Concordance analysis was performed for both analysis strategies against the reference PGT method.
PGT-M analysis was performed on 189 samples. For nine samples, the data quality was too poor to analyse further, and for 20 samples, no result could be obtained mainly due to biological limitations of the haplotyping approach, such as co-localisation of meiotic crossover events and nullisomy for the chromosome of interest. For the remaining 160 samples, 100% concordance was obtained between OnePGT and the reference PGT-M method. Equally for PGT-SR, 100% concordance for all 36 embryos tested was demonstrated. Moreover, with embryos originally analysed for PGT-M or PGT-SR for which genome-wide copy-number reference data were available, 100% concordance was shown for whole chromosome copy-number calls (PGT-A).
Inherent to haplotyping methodologies, processing of additional family members is still required. Biological limitations caused inconclusive results in 10% of cases.
Employment of OnePGT for PGT-M, PGT-SR, PGT-A or combined as comprehensive PGT offers a scalable platform, which is inherently generic and thereby, eliminates the need for family-specific design and optimisation. It can be considered as both an improvement and complement to the current methodologies for PGT.
Agilent Technologies, the KU Leuven (C1/018 to J.R.V. and T.V.) and the Horizon 2020 WIDENLIFE (692065 to J.R.V. and T.V). H.M. is supported by the Research Foundation Flanders (FWO, 11A7119N). M.Z.E, J.R.V. and T.V. are co-inventors on patent applications: ZL910050-PCT/EP2011/060211- WO/2011/157846 'Methods for haplotyping single cells' and ZL913096-PCT/EP2014/068315 'Haplotyping and copy-number typing using polymorphic variant allelic frequencies'. T.V. and J.R.V. are co-inventors on patent application: ZL912076-PCT/EP2013/070858 'High-throughput genotyping by sequencing'. Haplarithmisis ('Haplotyping and copy-number typing using polymorphic variant allelic frequencies') has been licensed to Agilent Technologies. The following patents are pending for OnePGT: US2016275239, AU2014345516, CA2928013, CN105874081, EP3066213 and WO2015067796. OnePGT is a registered trademark. D.L., J.T. and R.L.R. report personal fees during the conduct of the study and outside the submitted work from Agilent Technologies. S.H. and K.O.F. report personal fees and other during the conduct of the study and outside the submitted work from Agilent Technologies. J.A. reports personal fees and other during the conduct of the study from Agilent Technologies and personal fees from Agilent Technologies and UZ Leuven outside the submitted work. B.D. reports grants from IWT/VLAIO, personal fees during the conduct of the study from Agilent Technologies and personal fees and other outside the submitted work from Agilent Technologies. In addition, B.D. has a patent 20160275239 - Genetic Analysis Method pending. The remaining authors have no conflicts of interest.
Masset H
,Zamani Esteki M
,Dimitriadou E
,Dreesen J
,Debrock S
,Derhaag J
,Derks K
,Destouni A
,Drüsedau M
,Meekels J
,Melotte C
,Peeraer K
,Tšuiko O
,van Uum C
,Allemeersch J
,Devogelaere B
,François KO
,Happe S
,Lorson D
,Richards RL
,Theuns J
,Brunner H
,de Die-Smulders C
,Voet T
,Paulussen A
,Coonen E
,Vermeesch JR
... -
《-》
-
GENType: all-in-one preimplantation genetic testing by pedigree haplotyping and copy number profiling suitable for third-party reproduction.
Is it possible to develop a comprehensive pipeline for all-in-one preimplantation genetic testing (PGT), also suitable for parents-only haplotyping and, for the first time, third-party reproduction?
Optimized reduced representation sequencing (RRS) by GENType, along with a novel analysis platform (Hopla), enables cheap, accurate and comprehensive PGT of blastocysts, even without the inclusion of additional family members or both biological parents for genome-wide embryo haplotyping.
Several haplotyping strategies have proven to be effective for comprehensive PGT. However, these methods often rely on microarray technology, whole-genome sequencing (WGS) or a combination of strategies, hindering sample throughput and cost-efficiency. Moreover, existing tools (including other RRS-based strategies) require both prospective biological parents for embryo haplotyping, impeding application in a third-party reproduction setting.
This study included a total of 257 samples. Preliminary technical validation was performed on 81 samples handpicked from commercially available cell lines. Subsequently, a clinical validation was performed on a total of 72 trophectoderm biopsies from 24 blastocysts, tested for a monogenic disorder (PGT-M) (n = 15) and/or (sub)chromosomal aneuploidy (PGT-SR/PGT-A) (n = 9). Once validated, our pipeline was implemented in a diagnostic setting on 104 blastocysts for comprehensive PGT.
Samples were whole-genome amplified (WGA) and processed by GENType. Quality metrics, genome-wide haplotypes, b-allele frequencies (BAFs) and copy number profiles were generated by Hopla. PGT-M results were deduced from relative haplotypes, while PGT-SR/PGT-A results were inferred from read-count analysis and BAF profiles. Parents-only haplotyping was assessed by excluding additional family members from analysis and using an independently diagnosed embryo as phasing reference. Suitability for third-party reproduction through single-parent haplotyping was evaluated by excluding one biological parent from analysis. Results were validated against reference PGT methods.
Genome-wide haplotypes of single cells were highly accurate (mean > 99%) compared to bulk DNA. Unbalanced chromosomal abnormalities (>5 Mb) were detected by GENType. For both PGT-M as well as PGT-SR/PGT-A, our technology demonstrated 100% concordance with reference PGT methods for diverse WGA methods. Equally, for parents-only haplotyping and single-parent haplotyping (of autosomal dominant disorders and X-linked disorders), PGT-M results were fully concordant. Furthermore, the origin of trisomies in PGT-M embryos was correctly deciphered by Hopla.
Intrinsic to linkage-analysis strategies, de novo single-nucleotide variants remain elusive. Moreover, parents-only haplotyping is not a stand-alone approach and requires prior diagnosis of at least one reference embryo by an independent technology (i.e. direct mutation analysis) for haplotype phasing. Using a haplotyping approach, the presence of a homologous recombination site across the chromosome is biologically required to distinguish meiotic II errors from mitotic errors during trisomy origin investigation.
We offer a generic, fully automatable and accurate pipeline for PGT-M, PGT-A and PGT-SR as well as trisomy origin investigation without the need for personalized assays, microarray technology or WGS. The unique ability to perform single-parent assisted haplotyping of embryos paves the way for cost-effective PGT in a third-party reproduction setting.
L.D.W. is supported by the Research Foundation Flanders (FWO; 1S74619N). L.R. and B.M. are funded by Ghent University and M.B., S.S., K.T., F.V.M. and A.D. are supported by Ghent University Hospital. Research in the N.C. lab was funded by Ghent University, VIB and Kom op Tegen Kanker. A.D.K and N.C. are co-inventors of patent WO2017162754A1. The other authors have no conflicts of interest.
N/A.
De Witte L
,Raman L
,Baetens M
,De Koker A
,Callewaert N
,Symoens S
,Tilleman K
,Vanden Meerschaut F
,Dheedene A
,Menten B
... -
《-》
-
Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M.
Destouni A
,Dimitriadou E
,Masset H
,Debrock S
,Melotte C
,Van Den Bogaert K
,Zamani Esteki M
,Ding J
,Voet T
,Denayer E
,de Ravel T
,Legius E
,Meuleman C
,Peeraer K
,Vermeesch JR
... -
《-》