-
A systematic study of traditional Chinese medicine treating hepatitis B virus-related hepatocellular carcinoma based on target-driven reverse network pharmacology.
Hepatocellular carcinoma (HCC) is a serious global health problem, and hepatitis B virus (HBV) infection remains the leading cause of HCC. It is standard care to administer antiviral treatment for HBV-related HCC patients with concurrent anti-cancer therapy. However, a drug with repressive effects on both HBV infection and HCC has not been discovered yet. In addition, drug resistance and side effects have made existing therapeutic regimens suboptimal. Traditional Chinese medicine (TCM) has multi-ingredient and multi-target advantages in dealing with multifactorial HBV infection and HCC. TCM has long been served as a valuable source and inspiration for discovering new drugs. In present study, a target-driven reverse network pharmacology was applied for the first time to systematically study the therapeutic potential of TCM in treating HBV-related HCC. Firstly, 47 shared targets between HBV and HCC were screened as HBV-related HCC targets. Next, starting from 47 targets, the relevant chemical components and herbs were matched. A network containing 47 targets, 913 chemical components and 469 herbs was established. Then, the validated results showed that almost 80% of the herbs listed in chronic hepatitis B guidelines and primary liver cancer guidelines were included in the 469 herbs. Furthermore, functional analysis was conducted to understand the biological processes and pathways regulated by these 47 targets. The docking results indicated that the top 50 chemical components bound well to targets. Finally, the frequency statistical analysis results showed the 469 herbs against HBV-related HCC were mainly warm in property, bitter in taste, and distributed to the liver meridians. Taken together, a small library of 913 chemical components and 469 herbs against HBV-related HCC were obtained with a target-driven approach, thus paving the way for the development of therapeutic modalities to treat HBV-related HCC.
Yin X
,Li J
,Hao Z
,Ding R
,Qiao Y
... -
《Frontiers in Cellular and Infection Microbiology》
-
A systematic study on the treatment of hepatitis B-related hepatocellular carcinoma with drugs based on bioinformatics and key target reverse network pharmacology and experimental verification.
Chronic hepatitis B virus (HBV) infection is the major etiology of hepatocellular carcinoma (HCC). However, the mechanism of hepatitis B-related hepatocellular carcinoma (HBV-related HCC) is still unclear. Therefore, understanding the pathogenesis and searching for drugs to treat HBV-related HCC was an effective strategy to treat this disease.
Bioinformatics was used to predict the potential targets of HBV-related HCC. The reverse network pharmacology of key targets was used to analyze the clinical drugs, traditional Chinese medicine (TCM) and small molecules of TCM in the treatment of HBV-related HCC.
In this study, three microarray datasets totally containing 330 tumoral samples and 297 normal samples were selected from the GEO database. These microarray datasets were used to screen DEGs. And the expression profile and survival of 6 key genes were analyzed. In addition, Comparative Toxicogenomics Database and Coremine Medical database were used to enrich clinical drugs and TCM of HBV-related HCC by the 6 key targets. Then the obtained TCM were classified based on the Chinese Pharmacopoeia. Among these top 6 key genes, CDK1 and CCNB1 had the most connection nodes and the highest degree and were the most significantly expressed. In general, CDK1 and CCNB1 tend to form a complex, which is conducive to cell mitosis. Hence, this study mainly studied CDK1 and CCNB1. HERB database was used to predict small molecules TCM. The inhibition effect of quercetin, celastrol and cantharidin on HepG2.2.15 cells and Hep3B cells was verified by CCK8 experiment. The effects of quercetin, celastrol and cantharidin on CDK1 and CCNB1 of HepG2.2.15 cells and Hep3B cells were determined by Western Blot.
In short, 272 DEGs (53 upregulated and 219 downregulated) were identified. Among these DEGs, 6 key genes with high degree were identified, which were AURKA, BIRC5, CCNB1, CDK1, CDKN3 and TYMS. Kaplan-Meier plotter analysis showed that higher expression levels of AURKA, BIRC5, CCNB1, CDK1, CDKN3 and TYMS were associated with poor OS. According to the first 6 key targets, a variety of drugs and TCM were identified. These results showed that clinical drugs included targeted drugs, such as sorafenib, palbociclib and Dasatinib. and chemotherapy drugs, such as cisplatin and doxorubicin. TCM, such as the TCM flavor was mainly warm and bitter, and the main meridians were liver and lung. Small molecules of TCM included flavonoids, terpenoids, alkaloids and glycosides, such as quercetin, celastrol, cantharidin, hesperidin, silymarin, casticin, berberine and ursolic acid, which have great potential in anti-HBV-related HCC. For molecular docking of chemical components, the molecules with higher scores were flavonoids, alkaloids, etc. Three representative types of TCM small molecules were verified respectively, and it was found that quercetin, celastrol and cantharidin inhibited the proliferation of HepG2.2.15 cells and Hep3B cells along concentration gradient. Quercetin, celastrol and cantharidin decreased CDK1 expression in HepG2.2.15 and Hep3B cells, but for CCNB1, only cantharidin decreased CCNB1 expression in the two strains of cells.
In conclusion, AURKA, BIRC5, CCNB1, CDK1, CDKN3 and TYMS could be potential targets for the diagnosis and prognosis of HBV-related HCC. Clinical drugs include chemotherapeutic and targeted drug, traditional Chinese medicine is mainly bitter and warm TCM. Small molecular of TCM including flavonoids, terpenoids and glycosides and alkaloids, which have great potential in anti-HBV-related HCC. This study provides potential therapeutic targets and novel strategies for the treatment of HBV-related HCC.
Li S
,Hao L
,Hu X
,Li L
... -
《Infectious Agents and Cancer》
-
Mechanism of emodin in treating hepatitis B virus-associated hepatocellular carcinoma: network pharmacology and cell experiments.
Hepatocellular carcinoma (HCC) is a pressing global issue, with Hepatitis B virus (HBV) infection remaining the primary. Emodin, an anthraquinone compound extracted from the natural plant's. This study investigates the molecular targets and possible mechanisms of emodin in treating HBV-related HCC based on network pharmacology and molecular docking and validates the screened molecular targets through in vitro experiments.
Potential targets related to emodin were obtained through PubChem, CTD, PharmMapper, SuperPred, and TargetNet databases. Potential disease targets for HBV and HCC were identified using the DisGeNET, GeneCards, OMIM, and TTD databases. A Venn diagram was used to determine overlapping genes between the drug and the diseases. Enrichment analysis of these genes was performed using GO and KEGG via bioinformatics websites. The overlapping genes were imported into STRING to construct a protein-protein interaction network. Cytoscape 3.9.1 software was used for visualizing and analyzing the core targets. Molecular docking analysis of the drug and core targets was performed using Schrodinger. The regulatory effects of emodin on these core targets were validate through in vitro experiments.
A total of 43 overlapping genes were identified. GO analysis recognized 926 entries, and KEGG analysis identified 135 entries. The main pathways involved in the KEGG analysis included cancer, human cytomegalovirus infection and prostate cancer. The binding energies of emodin with HSP90AA1, PTGS2, GSTP1, SOD2, MAPK3, and PCNA were all less than -5 kcal/mol. Compared to normal liver tissue, the mRNA levels of XRCC1, MAPK3, and PCNA were significantly elevated in liver cancer tissue. The expression levels of XRCC1, HIF1A, MAPK3, and PCNA genes were closely related to HCC progression. High expressions of HSP90AA1, TGFB1, HIF1A, MAPK3, and PCNA were all closely associated with poor prognosis in HCC. In vitro experiments demonstrated that emodin significantly downregulated the expression of HSP90AA1, MAPK3, XRCC1, PCNA, and SOD2, while significantly upregulating the expression of PTGS2 and GSTP1.
This study, based on network pharmacology and molecular docking validation, suggests that emodin may exert therapeutic effects on HBV-related HCC by downregulating the expression of XRCC1, MAPK3, PCNA, HSP90AA1, and SOD2, and upregulating the expression of PTGS2 and GSTP1.
Wang Y
,Li S
,Ren T
,Zhang Y
,Li B
,Geng X
... -
《Frontiers in Cellular and Infection Microbiology》
-
Exploring the effect of Gupi Xiaoji Prescription on hepatitis B virus-related liver cancer through network pharmacology and in vitro experiments.
To study the effect of Gupi Xiaoji Prescription (GXP) on hepatitis B virus(HBV)-related liver cancer through network pharmacology coupled with in vitro experiments and explore their related mechanisms.
Gupi Xiaoji Prescription's chemical constituents and the action targets of its six medicinal components were identified using several databases. These included the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), the Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM), and the Traditional Chinese Medicine Integrated Database (TCMID), while GeneCards and OMIM were used to compile relevant liver cancer disease targets. Pathway enrichment of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), analysis of potential targets, and analysis of the enriched pathways in literature were executed in R. The Hepatocellular carcinoma (HCC)-derived HepG2.2.15 cell line stably expresses and replicates HBV. In vitro experiments with HepG2.2.15 were used to verify GXP's effects on HBV-related liver cancer, while the human liver cancer cell line HepG2 was used as the control.
171 active ingredients and 259 potential drug targets were screened from GXP, involving 181 pathways in vitro. These assays identified Polyphyllin I as an effective GXP component. Notably, GXP inhibited cell proliferation and metastasis in a concentration-dependent manner (P < 0.01). In comparison with the vehicle group, the fluorescence intensity of each drug group was significantly weakened (P < 0.01), while the drug group Mitofusins 1(MFN1) and protein expression level of Mitofusins 2 (MFN2) increased significantly. The protein expression level of Mitochondrial fission protein 1 (FIS1) and Optic Atrophy 1 (OPA1) also showed significant decreases (P < 0.01). Molecular docking revealed Fructus saponins I's high affinity with FIS1, MFN1, MFN2, and OPA1.
The network pharmacology results indicate that Gupi Xiaoji Prescription may treat liver cancer by regulating mitochondrial division and fusion of key genes to disrupt liver cancer cells' energy metabolism. In vitro experiments also verified that GXP could inhibit the proliferation and migration of HepG2.2.15 cells by up-regulating MFN1 and MFN2, down-regulating the expression of FIS1 and OPA1 in addition to damaging mitochondria. Consistent with network pharmacology and molecular docking results, Polyphyllin I may be the most active compound of the formula's components. It also shows that Traditional Chinese medicine (TCM) plays a significant, targeted role in the treatment of HBV-related liver cancer.
Yu S
,Gao W
,Zeng P
,Chen C
,Zhang Z
,Liu Z
,Liu J
... -
《-》
-
Euphorbia helioscopia L. extract suppresses hepatitis B virus-related hepatocellular carcinoma via alpha serine/threonine-protein kinase and Caspase-3.
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HBV-HCC) has poor prognosis and high mortality rate. Euphorbia helioscopia L. (EHL) is a classic Chinese medicinal herb.
This study aimed to evaluate in vitro anti-HBV-HCC properties of EHL, and explore it targets in HBV-HCC based on molecular docking.
The anti-tumor effect of EHL on HBV-HCC was evaluated using the cell viability, migration, invasion, and apoptosis of Hep 3B2.1-7 and HepG2.2.15 cells. Next, network pharmacological analysis was performed to predicted the key targets of EHL against HBV-HCC. Then the prognostic targets, including RAC-alpha serine/threonine-protein kinase (AKT1) and Caspase-3 (CASP3), were verified using molecular docking and rescue experiments.
EHL exhibited inhibitory effects on cell proliferation/migration/invasion and induced cell apoptosis. Network pharmacological analysis proposed 12 active compounds in EHL, which targeted 22 HBV-HCC-related genes. AKT1 and CASP3 were identified to be key targets for EHL against HBV-HCC. AKT1 and CASP3 had prognostic significance in liver cancer. Overexpression of AKT1 and caspase-3 inhibitor can counteract the EHL effect.
EHL can exert anticancer effects on HBV-HCC by inhibiting migration/invasion, and inducing apoptosis, which may be achieved through AKT1 and CASP3.
Xiong D
,Gong M
,Hou Y
,Chen H
,Gao T
,He L
... -
《-》