-
Maternal postures for fetal malposition in labour for improving the health of mothers and their infants.
Fetal malposition (occipito-posterior and persistent occipito-transverse) in labour is associated with adverse maternal and infant outcomes. Whether use of maternal postures can improve these outcomes is unclear. This Cochrane Review of maternal posture in labour is one of two new reviews replacing a 2007 review of maternal postures in pregnancy and labour.
To assess the effect of specified maternal postures for women with fetal malposition in labour on maternal and infant morbidity compared to other postures. SEARCH METHODS: We searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (13 July 2021), and reference lists of retrieved studies.
We included randomised controlled trials (RCTs) or cluster-RCTs conducted among labouring women with a fetal malposition confirmed by ultrasound or clinical examination, comparing a specified maternal posture with another posture. Quasi-RCTs and cross-over trials were not eligible for inclusion.
Two review authors independently assessed trials for inclusion, risk of bias, and performed data extraction. We used mean difference (MD) for continuous variables, and risk ratios (RRs) for dichotomous variables, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using the GRADE approach.
We included eight eligible studies with 1766 women. All studies reported some form of random sequence generation but were at high risk of performance bias due to lack of blinding. There was a high risk of selection bias in one study, detection bias in two studies, attrition bias in two studies, and reporting bias in two studies. Hands and knees The use of hands and knees posture may have little to no effect on operative birth (average RR 1.14, 95% CI 0.87 to 1.50; 3 trials, 721 women; low-certainty evidence) and caesarean section (RR 1.34, 95% CI 0.96 to 1.87; 3 trials, 721 women; low-certainty evidence) but the evidence is uncertain; and very uncertain for epidural use (average RR 0.74, 95% CI 0.41 to 1.31; 2 trials, 282 women; very low-certainty evidence), instrumental vaginal birth (average RR 1.04, 95% CI 0.57 to 1.90; 3 trials, 721 women; very low-certainty evidence), severe perineal tears (average RR 0.88, 95% CI 0.03 to 22.30; 2 trials, 586 women; very low-certainty evidence), maternal satisfaction (average RR 1.02, 95% CI 0.68 to 1.54; 3 trials, 350 women; very low-certainty evidence), and Apgar scores less than seven at five minutes (RR 0.71, 95% CI 0.21 to 2.34; 2 trials, 586 babies; very low-certainty evidence). No data were reported for the hands and knees comparisons for postpartum haemorrhage, serious neonatal morbidity, death (stillbirth or death of liveborn infant), admission to neonatal intensive care, neonatal encephalopathy, need for respiratory support, and neonatal jaundice requiring phototherapy. Lateral postures The use of lateral postures may have little to no effect on reducing operative birth (average RR 0.72, 95% CI 0.43 to 1.19; 4 trials, 871 women; low-certainty evidence), caesarean section (average RR 0.78, 95% CI 0.44 to 1.39; 4 trials, 871 women; low-certainty evidence), instrumental vaginal birth (average RR 0.73, 95% CI 0.39 to 1.36; 4 trials, 871 women; low-certainty evidence), and maternal satisfaction (RR 0.96, 95% CI 0.84 to 1.09; 2 trials, 451 women; low-certainty evidence), but the evidence is uncertain. The evidence is very uncertain about the effect of lateral postures on severe perineal tears (RR 0.66, 95% CI 0.17 to 2.48; 3 trials, 609 women; very low-certainty evidence), postpartum haemorrhage (RR 0.90, 95% CI 0.48 to 1.70; 1 trial, 322 women; very low-certainty evidence), serious neonatal morbidity (RR 1.41, 95% CI 0.64 to 3.12; 3 trials, 752 babies; very low-certainty evidence), Apgar scores less than seven at five minutes (RR 0.25, 95% CI 0.03 to 2.24; 1 trial, 322 babies; very low-certainty evidence), admissions to neonatal intensive care (RR 1.41, 95% CI 0.64 to 3.12; 2 trials, 542 babies; very low-certainty evidence) and neonatal death (stillbirth or death of liveborn) (1 trial, 210 women and their babies; no events). For the lateral posture comparisons, no data were reported for epidural use, neonatal encephalopathy, need for respiratory support, and neonatal jaundice requiring phototherapy. We were not able to estimate the outcome death (stillbirth or death of liveborn infant) due to no events (1 trial, 210 participants). AUTHORS' CONCLUSIONS: We found low- and very low-certainty evidence which indicated that the use of hands and knees posture or lateral postures in women in labour with a fetal malposition may have little or no effect on health outcomes of the mother or her infant. If a woman finds the use of hands and knees or lateral postures in labour comfortable there is no reason why they should not choose to use them. Further research is needed on the use of hands and knees and lateral postures for women with a malposition in labour. Trials should include further assessment of semi-prone postures, same-side-as-fetus lateral postures with or without hip hyperflexion, or both, and consider interventions of longer duration or that involve the early second stage of labour.
Barrowclough JA
,Lin L
,Kool B
,Hofmeyr GJ
,Crowther CA
... -
《Cochrane Database of Systematic Reviews》
-
Perineal techniques during the second stage of labour for reducing perineal trauma and postpartum complications.
Postpartum haemorrhage (PPH) is responsible for around 27% of global maternal deaths. Perineal tears are common in vaginal births and a significant contributor to excessive blood loss. A diversity of perineal techniques are utilised to prevent perineal trauma and reduce the incidence of PPH; however, they lack evidence-based comparisons to understand their effects.
To assess the effect of perineal techniques during the second stage of labour on the incidence of and morbidity associated with perineal trauma to prevent postpartum complications.
We searched four databases and two trial registers up to 16 April 2024. We checked references, searched citations and contacted study authors to identify additional studies.
We included randomised controlled trials (RCTs) of women in the second stage of labour who intended to give birth vaginally, comparing any perineal techniques with control or another perineal technique. We excluded studies that performed perineal techniques outside the second stage of labour.
Our critical outcomes were second-, third- and fourth-degree tears measured immediately after birth, and PPH ≥ 500 mL measured within 24 hours after birth.
We used the Cochrane risk of bias 2 tool to assess bias in the included RCTs.
We synthesised results for each outcome within each comparison using meta-analysis where possible. Where this was not possible due to the nature of the data, we synthesised results narratively. We used GRADE to assess the certainty of evidence for each outcome.
We included a total of 17 studies with 13,695 participants.
Hands off (or poised) versus hands on Hands off (poised) may result in little to no difference in second-degree tears (risk ratio (RR) 0.73, 95% confidence interval (CI) 0.32 to 1.64; 2 studies; low-certainty evidence) and third- or fourth-degree tears when data are combined (RR 1.27, 95% CI 0.81 to 1.99; 2 studies; low-certainty evidence). The evidence is very uncertain about the effect of hands off (poised) on third-degree tears and fourth-degree tears when reported separately (RR 0.50, 95% CI 0.05 to 5.27; 1 study; very low-certainty evidence and RR 3.00, 95% CI 0.13 to 71.22; 1 study; very low-certainty evidence). Hands off (poised) may result in little to no difference in PPH ≥ 500 mL (RR 1.16, 95% CI 0.92 to 1.47; 1 study; low-certainty evidence). Hands off (poised) probably results in little to no difference in breastfeeding two days after birth (RR 1.02, 95% CI 0.99 to 1.06; 1 study; moderate-certainty evidence) and perineal pain (RR 0.98, 95% CI 0.94 to 1.01; 1 study; moderate-certainty evidence). Vocalisation versus control Vocalisation may result in a reduction in second-degree tears (RR 0.56, 95% CI 0.23 to 1.38; 1 study; low-certainty evidence) and third-degree tears (RR 0.13, 95% CI 0.01 to 2.32; 1 study; low-certainty evidence), but the CIs are wide and include the possibility of no effect. No events were reported for fourth-degree tears (low-certainty evidence). Vocalisation may increase maternal satisfaction (RR 1.19, 95% CI 0.93 to 1.51; 1 study; low-certainty evidence). The evidence is very uncertain about the effect of vocalisation on perineal pain (RR 1.44, 95% CI 0.81 to 2.58; 1 study; very low-certainty evidence). Warm compress on the perineum versus control (hands off or no warm compress) Warm compress on the perineum may result in little to no difference in second-degree tears (RR 0.94, 95% CI 0.72 to 1.21; 2 studies; low-certainty evidence), but likely results in a reduction in third- or fourth-degree tears (RR 0.46, 95% CI 0.27 to 0.79; 3 studies; moderate-certainty evidence). Evidence from two smaller studies is very uncertain about the effect of warm compress on the perineum on third-degree tears (RR 0.51, 95% CI 0.04 to 7.05; 2 studies; very low-certainty evidence) or fourth-degree tears (RR 0.11, 95% CI 0.01 to 2.06; 2 studies; very low-certainty evidence) when reported separately. Warm compress likely results in a large reduction in perineal pain (mean difference (MD) -0.81, 95% CI -1.18 to -0.44; 1 study; moderate-certainty evidence). The evidence is very uncertain about the effect of warm compress on the perineum on maternal satisfaction and PPH ≥ 500 mL. Massage of the perineum versus control (hands off or no usual care) Massage of the perineum may have little to no effect on second-degree tears (RR 1.04, 95% CI 0.89 to 1.21; 4 studies; low-certainty evidence). The evidence is very uncertain about the effect of massage of the perineum on third-degree tears (RR 0.57, 95% CI 0.16 to 2.02; 4 studies; very low-certainty evidence). Massage of the perineum may reduce fourth-degree tears but the CIs are wide and include the possibility of no effect (RR 0.26, 95% CI 0.04 to 1.61; 4 studies; low-certainty evidence). The evidence suggests that massage likely results in little to no difference in perineal pain (RR 0.97, 95% CI 0.90, 1.05; 1 study; moderate-certainty evidence). One study reported 10 participants with postpartum haemorrhage across three interventions (warm compress, massage, control). Combined warm compress and massage of the perineum versus control Combined warm compress and massage of the perineum likely results in a reduction in second-degree tears when compared to a control (RR 0.63, 95% CI 0.46 to 0.86; 1 study; moderate-certainty evidence), but the evidence is very uncertain about the effect on third-degree tears (RR 2.92, 95% CI 0.12 to 70.72; 1 study; very low-certainty evidence). The intervention may result in a reduction in PPH ≥ 500 mL but the CIs are wide and include the possibility of no effect (RR 0.43, 95% CI 0.14 to 1.35; 1 study; low-certainty evidence). Combined warm compress and massage likely results in an increase in maternal satisfaction (MD 0.4, 95% CI -0.01 to 0.81; 1 study; moderate-certainty evidence). Combined warm compress and massage of the perineum versus massage alone Combined warm compress and massage of the perineum may result in little to no difference in second-degree tears (RR 0.95, 95% CI 0.86 to 1.06; 1 study; low-certainty evidence) when compared to massage alone, but the evidence is very uncertain about the effect on third- or fourth-degree tears (RR 0.98, 95% CI 0.06 to 15.49; 1 study; very low-certainty evidence). It may also result in little to no difference in PPH ≥ 500 mL (RR 1.10, 95% CI 0.59 to 2.07; 1 study; low-certainty evidence). The evidence suggests that combined warm compress and massage may result in little to no difference in maternal satisfaction (1 study; low-certainty evidence). Other perineal techniques We also assessed evidence on the following comparisons, but since they are used less frequently in global clinical practice to optimise birth outcomes, we have not presented the results summary here: Ritgen's manoeuvre versus standard care; primary delivery of posterior versus anterior shoulder; massage with enriched oil on the perineum versus massage with liquid wax; petroleum jelly on the perineum versus control; and perineal protection device versus control.
Overall, the evidence for the effectiveness of perineal techniques to reduce perineal trauma and postpartum haemorrhage is very uncertain. Very few studies reported rates of postpartum haemorrhage, adverse events, women's or health workers' experience or other important outcomes that allow us to understand the effectiveness and acceptability of perineal techniques to reduce perineal trauma. Prior to any further large trials, research is needed to clarify the types of interventions, including a clear description of the process of development and involvement of relevant stakeholders. There is a need to clarify how the intervention is proposed to achieve its effects. Trials would benefit from process evaluation alongside, to explore context, mechanisms and effects.
This Cochrane review was funded (in part) by WHO (APW 2024/1475460). TF, VL and the CIDG editorial base are funded by UK aid from the UK government for the benefit of low- and middle-income countries (project number 300342-104). The views expressed do not necessarily reflect the UK government's official policies.
Registration and protocol: PROSPERO, CRD42024537252. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024537252.
Dwan K
,Fox T
,Lutje V
,Lavender T
,Mills TA
... -
《Cochrane Database of Systematic Reviews》
-
Magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus.
Magnesium sulphate is a common therapy in perinatal care. Its benefits when given to women at risk of preterm birth for fetal neuroprotection (prevention of cerebral palsy for children) were shown in a 2009 Cochrane review. Internationally, use of magnesium sulphate for preterm cerebral palsy prevention is now recommended practice. As new randomised controlled trials (RCTs) and longer-term follow-up of prior RCTs have since been conducted, this review updates the previously published version.
To assess the effectiveness and safety of magnesium sulphate as a fetal neuroprotective agent when given to women considered to be at risk of preterm birth.
We searched Cochrane Pregnancy and Childbirth's Trials Register, ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) on 17 March 2023, as well as reference lists of retrieved studies.
We included RCTs and cluster-RCTs of women at risk of preterm birth that assessed prenatal magnesium sulphate for fetal neuroprotection compared with placebo or no treatment. All methods of administration (intravenous, intramuscular, and oral) were eligible. We did not include studies where magnesium sulphate was used with the primary aim of preterm labour tocolysis, or the prevention and/or treatment of eclampsia.
Two review authors independently assessed RCTs for inclusion, extracted data, and assessed risk of bias and trustworthiness. Dichotomous data were presented as summary risk ratios (RR) with 95% confidence intervals (CI), and continuous data were presented as mean differences with 95% CI. We assessed the certainty of the evidence using the GRADE approach.
We included six RCTs (5917 women and their 6759 fetuses alive at randomisation). All RCTs were conducted in high-income countries. The RCTs compared magnesium sulphate with placebo in women at risk of preterm birth at less than 34 weeks' gestation; however, treatment regimens and inclusion/exclusion criteria varied. Though the RCTs were at an overall low risk of bias, the certainty of evidence ranged from high to very low, due to concerns regarding study limitations, imprecision, and inconsistency. Primary outcomes for infants/children: Up to two years' corrected age, magnesium sulphate compared with placebo reduced cerebral palsy (RR 0.71, 95% CI 0.57 to 0.89; 6 RCTs, 6107 children; number needed to treat for additional beneficial outcome (NNTB) 60, 95% CI 41 to 158) and death or cerebral palsy (RR 0.87, 95% CI 0.77 to 0.98; 6 RCTs, 6481 children; NNTB 56, 95% CI 32 to 363) (both high-certainty evidence). Magnesium sulphate probably resulted in little to no difference in death (fetal, neonatal, or later) (RR 0.96, 95% CI 0.82 to 1.13; 6 RCTs, 6759 children); major neurodevelopmental disability (RR 1.09, 95% CI 0.83 to 1.44; 1 RCT, 987 children); or death or major neurodevelopmental disability (RR 0.95, 95% CI 0.85 to 1.07; 3 RCTs, 4279 children) (all moderate-certainty evidence). At early school age, magnesium sulphate may have resulted in little to no difference in death (fetal, neonatal, or later) (RR 0.82, 95% CI 0.66 to 1.02; 2 RCTs, 1758 children); cerebral palsy (RR 0.99, 95% CI 0.69 to 1.41; 2 RCTs, 1038 children); death or cerebral palsy (RR 0.90, 95% CI 0.67 to 1.20; 1 RCT, 503 children); and death or major neurodevelopmental disability (RR 0.81, 95% CI 0.59 to 1.12; 1 RCT, 503 children) (all low-certainty evidence). Magnesium sulphate may also have resulted in little to no difference in major neurodevelopmental disability, but the evidence is very uncertain (average RR 0.92, 95% CI 0.53 to 1.62; 2 RCTs, 940 children; very low-certainty evidence). Secondary outcomes for infants/children: Magnesium sulphate probably reduced severe intraventricular haemorrhage (grade 3 or 4) (RR 0.76, 95% CI 0.60 to 0.98; 5 RCTs, 5885 infants; NNTB 92, 95% CI 55 to 1102; moderate-certainty evidence) and may have resulted in little to no difference in chronic lung disease/bronchopulmonary dysplasia (average RR 0.92, 95% CI 0.77 to 1.10; 5 RCTs, 6689 infants; low-certainty evidence). Primary outcomes for women: Magnesium sulphate may have resulted in little or no difference in severe maternal outcomes potentially related to treatment (death, cardiac arrest, respiratory arrest) (RR 0.32, 95% CI 0.01 to 7.92; 4 RCTs, 5300 women; low-certainty evidence). However, magnesium sulphate probably increased maternal adverse effects severe enough to stop treatment (average RR 3.21, 95% CI 1.88 to 5.48; 3 RCTs, 4736 women; moderate-certainty evidence). Secondary outcomes for women: Magnesium sulphate probably resulted in little to no difference in caesarean section (RR 0.96, 95% CI 0.91 to 1.02; 5 RCTs, 5861 women) and postpartum haemorrhage (RR 0.94, 95% CI 0.80 to 1.09; 2 RCTs, 2495 women) (both moderate-certainty evidence). Breastfeeding at hospital discharge and women's views of treatment were not reported.
The currently available evidence indicates that magnesium sulphate for women at risk of preterm birth for neuroprotection of the fetus, compared with placebo, reduces cerebral palsy, and death or cerebral palsy, in children up to two years' corrected age, and probably reduces severe intraventricular haemorrhage for infants. Magnesium sulphate may result in little to no difference in outcomes in children at school age. While magnesium sulphate may result in little to no difference in severe maternal outcomes (death, cardiac arrest, respiratory arrest), it probably increases maternal adverse effects severe enough to stop treatment. Further research is needed on the longer-term benefits and harms for children, into adolescence and adulthood. Additional studies to determine variation in effects by characteristics of women treated and magnesium sulphate regimens used, along with the generalisability of findings to low- and middle-income countries, should be considered.
Shepherd ES
,Goldsmith S
,Doyle LW
,Middleton P
,Marret S
,Rouse DJ
,Pryde P
,Wolf HT
,Crowther CA
... -
《Cochrane Database of Systematic Reviews》
-
Targeted client communication via mobile devices for improving maternal, neonatal, and child health.
The global burden of poor maternal, neonatal, and child health (MNCH) accounts for more than a quarter of healthy years of life lost worldwide. Targeted client communication (TCC) via mobile devices (MD) (TCCMD) may be a useful strategy to improve MNCH.
To assess the effects of TCC via MD on health behaviour, service use, health, and well-being for MNCH.
In July/August 2017, we searched five databases including The Cochrane Central Register of Controlled Trials, MEDLINE and Embase. We also searched two trial registries. A search update was carried out in July 2019 and potentially relevant studies are awaiting classification.
We included randomised controlled trials that assessed TCC via MD to improve MNCH behaviour, service use, health, and well-being. Eligible comparators were usual care/no intervention, non-digital TCC, and digital non-targeted client communication.
We used standard methodological procedures recommended by Cochrane, although data extraction and risk of bias assessments were carried out by one person only and cross-checked by a second.
We included 27 trials (17,463 participants). Trial populations were: pregnant and postpartum women (11 trials conducted in low-, middle- or high-income countries (LMHIC); pregnant and postpartum women living with HIV (three trials carried out in one lower middle-income country); and parents of children under the age of five years (13 trials conducted in LMHIC). Most interventions (18) were delivered via text messages alone, one was delivered through voice calls only, and the rest were delivered through combinations of different communication channels, such as multimedia messages and voice calls. Pregnant and postpartum women TCCMD versus standard care For behaviours, TCCMD may increase exclusive breastfeeding in settings where rates of exclusive breastfeeding are less common (risk ratio (RR) 1.30, 95% confidence intervals (CI) 1.06 to 1.59; low-certainty evidence), but have little or no effect in settings where almost all women breastfeed (low-certainty evidence). For use of health services, TCCMD may increase antenatal appointment attendance (odds ratio (OR) 1.54, 95% CI 0.80 to 2.96; low-certainty evidence); however, the CI encompasses both benefit and harm. The intervention may increase skilled attendants at birth in settings where a lack of skilled attendants at birth is common (though this differed by urban/rural residence), but may make no difference in settings where almost all women already have a skilled attendant at birth (OR 1.00, 95% CI 0.34 to 2.94; low-certainty evidence). There were uncertain effects on maternal and neonatal mortality and morbidity because the certainty of the evidence was assessed as very low. TCCMD versus non-digital TCC (e.g. pamphlets) TCCMD may have little or no effect on exclusive breastfeeding (RR 0.92, 95% CI 0.79 to 1.07; low-certainty evidence). TCCMD may reduce 'any maternal health problem' (RR 0.19, 95% CI 0.04 to 0.79) and 'any newborn health problem' (RR 0.52, 95% CI 0.25 to 1.06) reported up to 10 days postpartum (low-certainty evidence), though the CI for the latter includes benefit and harm. The effect on health service use is unknown due to a lack of studies. TCCMD versus digital non-targeted communication No studies reported behavioural, health, or well-being outcomes for this comparison. For use of health services, there are uncertain effects for the presence of a skilled attendant at birth due to very low-certainty evidence, and the intervention may make little or no difference to attendance for antenatal influenza vaccination (RR 1.05, 95% CI 0.71 to 1.58), though the CI encompasses both benefit and harm (low-certainty evidence). Pregnant and postpartum women living with HIV TCCMD versus standard care For behaviours, TCCMD may make little or no difference to maternal and infant adherence to antiretroviral (ARV) therapy (low-certainty evidence). For health service use, TCC mobile telephone reminders may increase use of antenatal care slightly (mean difference (MD) 1.5, 95% CI -0.36 to 3.36; low-certainty evidence). The effect on the proportion of births occurring in a health facility is uncertain due to very low-certainty evidence. For health and well-being outcomes, there was an uncertain intervention effect on neonatal death or stillbirth, and infant HIV due to very low-certainty evidence. No studies reported on maternal mortality or morbidity. TCCMD versus non-digital TCC The effect is unknown due to lack of studies reporting this comparison. TCCMD versus digital non-targeted communication TCCMD may increase infant ARV/prevention of mother-to-child transmission treatment adherence (RR 1.26, 95% CI 1.07 to 1.48; low-certainty evidence). The effect on other outcomes is unknown due to lack of studies. Parents of children aged less than five years No studies reported on correct treatment, nutritional, or health outcomes. TCCMD versus standard care Based on 10 trials, TCCMD may modestly increase health service use (vaccinations and HIV care) (RR 1.21, 95% CI 1.08 to 1.34; low-certainty evidence); however, the effect estimates varied widely between studies. TCCMD versus non-digital TCC TCCMD may increase attendance for vaccinations (RR 1.13, 95% CI 1.00 to 1.28; low-certainty evidence), and may make little or no difference to oral hygiene practices (low-certainty evidence). TCCMD versus digital non-targeted communication TCCMD may reduce attendance for vaccinations, but the CI encompasses both benefit and harm (RR 0.63, 95% CI 0.33 to 1.20; low-certainty evidence). No trials in any population reported data on unintended consequences.
The effect of TCCMD for most outcomes is uncertain. There may be improvements for some outcomes using targeted communication but these findings were of low certainty. High-quality, adequately powered trials and cost-effectiveness analyses are required to reliably ascertain the effects and relative benefits of TCCMD. Future studies should measure potential unintended consequences, such as partner violence or breaches of confidentiality.
Palmer MJ
,Henschke N
,Bergman H
,Villanueva G
,Maayan N
,Tamrat T
,Mehl GL
,Glenton C
,Lewin S
,Fønhus MS
,Free C
... -
《Cochrane Database of Systematic Reviews》
-
Tranexamic acid for preventing postpartum haemorrhage after caesarean section.
Postpartum haemorrhage (PPH) is common and potentially life-threatening. The antifibrinolytic drug tranexamic acid (TXA) is recommended for treating PPH; it reduces the risk of death from haemorrhage by one-third when given soon after bleeding onset, but not overall risk of death. Interest in whether TXA may be effective in preventing PPH is growing. Evidence indicates that TXA given more than three hours after injury to bleeding trauma patients increases mortality. Potential harm becomes critical in prophylactic use of TXA. Reliable evidence of the effect and safety profile of TXA is required before widespread prophylactic use can be considered.
To assess the effects of TXA for preventing PPH compared to placebo or no treatment (with or without uterotonic co-treatment) in women during caesarean birth.
We searched CENTRAL, MEDLINE, Embase, and WHO ICTRP to 20 February 2024 and searched reference lists of retrieved studies.
We included randomised controlled trials (RCTs) evaluating the use of TXA alone or plus uterotonics during caesarean birth for preventing PPH. Trials needed to be prospectively registered (i.e. before starting recruitment). We applied a trustworthiness checklist.
The critical outcome was blood loss ≥ 1000 mL, measured using estimated or calculated methods. Important outcomes included maternal death, severe morbidity, blood transfusion, the use of additional surgical interventions to control PPH, thromboembolic events, use of additional uterotonics, hysterectomy, maternal satisfaction, and breastfeeding at discharge.
We assessed risk of bias in the included studies using Cochrane's RoB 1 tool.
Two review authors independently selected trials, extracted data, and assessed risk of bias and trial trustworthiness. We pooled data using random-effects meta-analysis. We assessed the certainty of the evidence using GRADE.
We included six RCTs with 15,981 participants. All 12 trials in the previous version of this review were not included after review of trial registrations and trustworthiness checklists. Most included studies involved women at low risk of PPH and were conducted in high-resource settings.
Prophylactic TXA in addition to standard care compared to placebo in addition to standard care or standard care alone TXA results in little to no difference in estimated blood loss ≥ 1000 mL (risk ratio (RR) 0.94, 95% confidence interval (CI) 0.79 to 1.11; 4 RCTs; n = 13,042; high certainty evidence), resulting in 8 fewer per 1000 women having estimated blood loss ≥ 1000 mL (from 30 fewer to 16 more). TXA likely results in a slight reduction in calculated blood loss ≥ 1000 mL (RR 0.83, 95% CI 0.76 to 0.92; 2 RCTs; n = 4327; moderate certainty evidence), resulting in 53 fewer per 1000 having calculated blood loss ≥ 1000 mL (from 75 fewer to 25 fewer). The evidence is very uncertain about the effect of TXA on maternal death (one event in placebo group, none in TXA group). No trials measured severe morbidity. TXA likely results in little to no difference in blood transfusion (RR 0.88, 95% CI 0.72 to 1.08; 5 RCTs; n = 15,740; moderate certainty evidence), resulting in 4 fewer per 1000 women requiring a blood transfusion (from 10 fewer to 3 more). TXA results in little to no difference in additional surgical interventions to control PPH (RR 1.02, 95% CI 0.86 to 1.22; 4 RCTs; n = 15,631; high certainty evidence), resulting in 1 more per 1000 women requiring additional surgical intervention (from 4 fewer to 7 more). The evidence is very uncertain about the effect of TXA on thromboembolic events (RR 1.40, 95% CI 0.22 to 8.90; 4 RCTs; n = 14,480; very low certainty evidence), resulting in 1 more per 1000 women having a thromboembolic event (from 2 fewer to 17 more). TXA results in little to no difference in the need for additional uterotonics (RR 0.88, 95% CI 0.78 to 1.00; 4 RCTs; n = 15,728; high certainty evidence), resulting in 15 fewer per 1000 women requiring additional uterotonics (from 27 fewer to 0 fewer). The evidence is very uncertain about the effect of TXA on hysterectomy (RR 0.80, 95% CI 0.20 to 3.29; 2 RCTs; n = 4546; very low certainty evidence), resulting in 3 fewer per 10,000 women requiring a hysterectomy (from 11 fewer to 31 more). One trial measuring maternal satisfaction reported no difference between groups at day two postpartum. No data were available on breastfeeding. Overall, studies had low risk of bias. We downgraded the certainty of evidence mainly for imprecision.
Prophylactic TXA in addition to standard care during caesarean birth results in little to no difference in estimated blood loss ≥ 1000 mL and likely results in a slight reduction in calculated blood loss ≥ 1000 mL compared to placebo. There were no data for severe morbidity due to PPH. Event rates for further interventions to control PPH were low and similar across groups. Prophylactic TXA thus results in little to no difference between groups for additional surgical interventions (32 versus 31 per 1000), and likely results in little to no difference between groups for blood transfusions (31 versus 36 per 1000) and use of additional uterotonics (107 versus 121 per 1000). There were very few events for the outcomes maternal death (1 in placebo group), thromboembolic events (2 versus 3 per 1000), and hysterectomy (1 per 1000 in each group). Evidence for these serious adverse events is therefore very uncertain. Decisions about implementing routine prophylactic TXA during caesarean birth should not only consider outcomes related to blood loss, but also the relatively low rates of PPH morbidity and uncertainty of serious adverse events. Most studies included women at low risk of PPH, thereby precluding any conclusions about women at high risk of PPH. Cost associated with routine use of an additional drug for all caesarean births needs to be considered.
This Cochrane review was funded in part by the World Health Organization.
The published protocol and updates to the review can be accessed: Protocol (2009) DOI: 10.1002/14651858.CD007872 Original Review (2010) DOI: 10.1002/14651858.CD007872.pub2 Review Update (2015) DOI: 10.1002/14651858.CD007872.pub3.
Rohwer C
,Rohwer A
,Cluver C
,Ker K
,Hofmeyr GJ
... -
《Cochrane Database of Systematic Reviews》