Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology.

来自 PUBMED

作者:

Hsu SYBayati MLi CHsieh HYBelenchia AKlutts JZemmer SAReynolds MSemkiw EJohnson HYFoley TWieberg CGWenzel JJohnson MCLin CH

展开

摘要:

Wastewater-based epidemiology (WBE) has been one of the most cost-effective approaches to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in the communities since the coronavirus disease 2019 (COVID-19) outbreak in 2020. Normalizing SARS-CoV-2 concentrations by the population biomarkers in wastewater is critical for interpreting the viral loads, comparing the epidemiological trends among the sewersheds, and identifying the vulnerable communities. In this study, five population biomarkers, pepper mild mottle virus (PMMoV), creatinine (CRE), 5-hydroxyindoleacetic acid (5-HIAA), caffeine (CAF) and its metabolite paraxanthine (PARA) were investigated and validated for their utility in normalizing the SARS-CoV-2 loads through two normalizing approaches using the data from 64 wastewater treatment plants (WWTPs) in Missouri. Their utility in assessing the real-time population contributing to the wastewater was also evaluated. The best performing candidate was further tested for its capacity for improving correlation between normalized SARS-CoV-2 loads and the clinical cases reported in the City of Columbia, Missouri, a university town with a constantly fluctuating population. Our results showed that, except CRE, the direct and indirect normalization approaches using biomarkers allow accounting for the changes in wastewater dilution and differences in relative human waste input over time regardless flow volume and population of the given WWTP. Among selected biomarkers, PARA is the most reliable population biomarker in determining the SARS-CoV-2 load per capita due to its high accuracy, low variability, and high temporal consistency to reflect the change in population dynamics and dilution in wastewater. It also demonstrated its excellent utility for real-time assessment of the population contributing to the wastewater. In addition, the viral loads normalized by the PARA-estimated population significantly improved the correlation (rho=0.5878, p < 0.05) between SARS-CoV-2 load per capita and case numbers per capita. This chemical biomarker complements the current normalization scheme recommended by CDC and helps us understand the size, distribution, and dynamics of local populations for forecasting the prevalence of SARS-CoV2 within each sewershed.

收起

展开

DOI:

10.1016/j.watres.2022.118985

被引量:

23

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(141)

参考文献(64)

引证文献(23)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读