-
The number and rate of euploid blastocysts in women undergoing IVF/ICSI cycles are strongly dependent on ovarian reserve and female age.
Can the possibility of having at least one euploid blastocyst for embryo transfer and the total number of euploid blastocysts be predicted for couples before they enter the IVF programme?
Ovarian reserve and female age are the most important predictors of having at least one euploid blastocyst and the total number of euploid blastocysts.
The blastocyst euploidy rate among women undergoing ART has already been shown to significantly decrease with increasing female age, and the total number of euploid embryos is dependent on the blastocyst cohort size. However, the vast majority of published studies are based on retrospective analysis of data.
This prospective analysis included 847 consecutively enrolled couples approaching their first preimplantation genetic testing for aneuploidies (PGT-A) cycle between 2017 and 2020. Only couples for whom ejaculated sperm was available and women with a BMI of <35 kg/m2 were included in the study. Only the first cycle was included for each patient.
The study was conducted at an IVF centre where, for all patients, the planned treatment was to obtain embryos at the blastocyst stage for the PGT-A programme. The impact of the following covariates was investigated: a woman's serum AMH level, age, height, weight and BMI and a man's age, height, weight, BMI, sperm volume and sperm motility and morphology. The analysis was performed with a machine learning (ML) approach. Models were fit on the training set (677 patients) and their predictive performance was then evaluated on the test set (170 patients).
After ovarian stimulation and oocyte insemination, 40.1% of couples had at least one blastocyst available for the PGT-A. Of 1068 blastocysts analysed, 33.6% were euploid. Two distinct ML models were fit: one for the probability of having at least one euploid blastocyst and one for the number of euploid blastocysts obtained. In the training set of patients, the variable importance plots of both models indicated that AMH and the woman's age are by far the most important predictors. Specifically, a positive association between the outcome and AMH and a negative association between the outcome and female age appeared. Gradient-boosted modelling offers a greater predictive performance than generalized additive models (GAMs).
The study was performed based on data from a single centre. While this provides a robust set of data with a constant ART process and laboratory practice, the model might be suitable only for the evaluated population, which may limit the generalization of the model to other populations.
ML models indicate that for couples entering the IVF/PGT-A programme, ovarian reserve, which is known to vary with age, is the most important predictor of having at least one euploid embryo. According to the GAM, the probability of a 30-year-old woman having at least one euploid embryo is 28% or 47% if her AMH level is 1 or 3 ng/ml, respectively; if the woman is 40 years old, this probability is 18% with an AMH of 1 ng/ml and 30% with an AMH of 3 ng/ml.
This study was supported by an unrestricted grant from Gedeon Richter. The authors declared no conflict of interests.
N/A.
La Marca A
,Capuzzo M
,Longo M
,Imbrogno MG
,Spedicato GA
,Fiorentino F
,Spinella F
,Greco P
,Minasi MG
,Greco E
... -
《-》
-
Leave the past behind: women's reproductive history shows no association with blastocysts' euploidy and limited association with live birth rates after euploid embryo transfers.
Is there an association between patients' reproductive history and the mean euploidy rates per biopsied blastocysts (m-ER) or the live birth rates (LBRs) per first single vitrified-warmed euploid blastocyst transfers?
Patients' reproductive history (as annotated during counselling) showed no association with the m-ER, but a lower LBR was reported after euploid blastocyst transfer in women with a history of repeated implantation failure (RIF).
Several studies have investigated the association between the m-ER and (i) patients' basal characteristics, (ii) ovarian stimulation strategy and dosage, (iii) culture media and conditions, and (iv) embryo morphology and day of full blastocyst development. Conversely, the expected m-ER due to women's reproductive history (previous live births (LBs), miscarriages, failed IVF cycles and transfers, and lack of euploid blastocysts among prior cohorts of biopsied embryos) still needs investigations. Yet, this information is critical to counsel new patients about a first cycle with preimplantation genetic testing for aneuploidy (PGT-A), but even more so after former adverse outcomes to prevent treatment drop-out.
This observational study included all patients undergoing a comprehensive chromosome testing (CCT)-based PGT-A cycle with at least one biopsied blastocyst in the period April 2013-December 2019 at a private IVF clinic (n = 2676 patients undergoing 2676 treatments and producing and 8151 blastocysts). m-ER were investigated according to women's reproductive history of LBs: no/≥1, miscarriages: no/1/>1; failed IVF cycles: no/1/2/>2, and implantation failures after previous transfers: no/1/2/>2. Among the 2676 patients included in this study, 440 (16%) had already undergone PGT-A before the study period; the data from these patients were further clustered according to the presence or absence of euploid embryo(s) in their previous cohort of biopsied blastocysts. The clinical outcomes per first single vitrified-warmed euploid blastocyst transfers (n =1580) were investigated according to the number of patients' previous miscarriages and implantation failures.
The procedures involved in this study included ICSI, blastocyst culture, trophectoderm biopsy without hatching in Day 3, CCT-based PGT-A without reporting segmental and/or putative mitotic (or mosaic) aneuploidies and single vitrified-warmed euploid blastocyst transfer. For statistical analysis, Mann-Whitney U or Kruskal-Wallis tests, as well as linear regressions and generalised linear models among ranges of maternal age at oocyte retrieval were performed to identify significant differences for continuous variables. Fisher's exact tests and multivariate logistic regression analyses were instead used for categorical variables.
Maternal age at oocyte retrieval was the only variable significantly associated with the m-ER. We defined five clusters (<35 years: 66 ± 31%; 35-37 years: 58 ± 33%; 38-40 years: 43 ± 35%; 40-42 years: 28 ± 34%; and >42 years: 17 ± 31%) and all analyses were conducted among them. The m-ER did not show any association with the number of previous LBs, miscarriages, failed IVF cycles or implantation failures. Among patients who had already undergone PGT-A before the study period, the m-ER did not associate with the absence (or presence) of euploid blastocysts in their former cohort of biopsied embryos. Regarding clinical outcomes of the first single vitrified-warmed euploid blastocyst transfer, the implantation rate was 51%, the miscarriage rate was 14% and the LBR was 44%. This LBR was independent of the number of previous miscarriages, but showed a decreasing trend depending on the number of previous implantation failures, reaching statistical significance when comparing patients with >2 failures and patients with no prior failure (36% versus 47%, P < 0.01; multivariate-OR adjusted for embryo quality and day of full blastocyst development: 0.64, 95% CI 0.48-0.86, P < 0.01). No such differences were shown for previous miscarriage rates.
The sample size for treatments following a former completed PGT-A cycle should be larger in future studies. The data should be confirmed from a multicentre perspective. The analysis should be performed also in non-PGT cycles and/or including patients who did not produce blastocysts, in order to investigate a putative association between women's reproductive history with outcomes other than euploidy and LBRs.
These data are critical to counsel infertile couples before, during and after a PGT-A cycle, especially to prevent treatment discontinuation due to previous adverse reproductive events. Beyond the 'maternal age effect', the causes of idiopathic recurrent pregnancy loss (RPL) and RIF are likely to be endometrial receptivity and selectivity issues; transferring euploid blastocysts might reduce the risk of a further miscarriage, but more information beyond euploidy are required to improve the prognosis in case of RIF.
No funding was received and there are no competing interests.
N/A.
Cimadomo D
,Capalbo A
,Dovere L
,Tacconi L
,Soscia D
,Giancani A
,Scepi E
,Maggiulli R
,Vaiarelli A
,Rienzi L
,Ubaldi FM
... -
《-》
-
Intracytoplasmic sperm injection is not superior to conventional IVF in couples with non-male factor infertility and preimplantation genetic testing for aneuploidies (PGT-A).
Does the insemination method impact the euploidy outcome in couples with non-male factor infertility?
Conventional IVF can be applied in cycles with preimplantation genetic testing for aneuploidies (PGT-A), as both IVF and ICSI generate equal numbers of euploid blastocysts.
Ever since its introduction, the popularity of ICSI has increased tremendously, even in couples with non-male factor infertility. The use of conventional IVF is a contraindication for couples undergoing PGT to ensure monospermic fertilisation and to eliminate potential paternal contamination from extraneous sperm attached to the zona pellucida. Despite this, it has recently been shown that sperm DNA fails to amplify under the conditions used for trophectoderm biopsy samples.
This single-centre prospective pilot study included 30 couples between November 2018 and April 2019.
Arab couples, with a female age between 18-40 years, body mass index ≤30 kg/m2, at least 10 cumulus oocyte complexes (COCs) following oocyte retrieval (OR) and normal semen concentration and motility (WHO) in the fresh ejaculate on the day of OR, were eligible for the study. Half of the sibling oocytes were assigned to conventional IVF, and the other half were assigned to ICSI. All embryos were cultured in a time-lapse imaging system in Global Total LP media. Blastocysts were subjected to trophectoderm biopsy on Day 5, 6 or 7 and next-generation sequencing (NGS) to determine blastocyst ploidy status. The primary objective was to determine the euploid rate in blastocysts from sibling oocytes.
A total of 568 COCs were randomly allocated between IVF (n = 283; 9.4 ± 4.0) and ICSI (n = 285; 9.5 ± 4.1). While the incidence of normal fertilisation per cycle (6.1 ± 3.8 (64.0%) vs 6.3 ± 3.5 (65.4%); P = 0.609) was distributed equally between IVF and ICSI, the degeneration rate (0.1 ± 0.3 vs 0.7 ± 0.8; P = 0.0003) was significantly higher after ICSI and the incidence of abnormal fertilisation (≥3 pronuclei) was significantly higher after IVF (0.9 ± 1.2 vs 0.2 ± 0.4; P = 0.005). For all fertilised oocytes, there were no differences in the number of good-quality embryos on Day 3 (74% vs 78%; P = 0.467), nor in the blastulation rate on Day 5 (80.4% vs 70.8%; P = 0.076). The total number of blastocysts biopsied per cycle on Days 5, 6 and 7 was not significantly different between IVF or ICSI (4.0 ± 2.8 vs 3.9 ± 2.5; P = 0.774). With euploid rates of 49.8 and 44.1% (P = 0.755; OR: 1.05664 [0.75188-1.48494), respectively, there was no significant difference identified between IVF and ICSI (2.0 ± 1.8 vs 1.9 ± 1.7; P = 0.808) and all couples had at least one euploid blastocyst available for transfer. When considering only euploid blastocysts, the male/female ratio was 61/39 in IVF and 43/57 in ICSI (P = 0.063).
This is a pilot study with a limited patient population of 30 couples (and 568 COCs) with a normal ovarian response. The results of our study should not be extrapolated to other patient populations.
It is safe to apply conventional IVF in couples with non-male factor infertility undergoing PGT-A.
No funding was obtained. There are no competing interests.
NCT03708991.
De Munck N
,El Khatib I
,Abdala A
,El-Damen A
,Bayram A
,Arnanz A
,Melado L
,Lawrenz B
,Fatemi HM
... -
《-》
-
Comparison of blastocyst euploidy rates following luteal versus follicular phase stimulation in a GnRH antagonist protocol: a prospective study with repeated ovarian stimulation cycles.
Is there any difference in the mean number of euploid embryos following luteal phase start (LS) and follicular phase start (FS) of ovarian stimulation?
The mean number of euploid blastocysts is equivalent independent of whether the inseminated oocytes are derived from FS or LS.
Starting ovarian stimulation at any time of the cycle ('random-start') is commonly used for emergency fertility preservation in cancer patients. A few retrospective studies have been published evaluating LS in women undergoing ovarian stimulation in the context of IVF, but there is a lack of robust data on the comparative efficacy of LS versus FS.Although 'random start' is commonly used in cancer survivors, few retrospective and uncontrolled studies have been published evaluating luteal phase stimulation in women undergoing ovarian stimulation in the context of IVF. Owing to this evident lack of robust data on the efficacy of LS, guidelines typically recommend the LS approach only for medical reasons and not in the context of IVF.
This is a prospective, equivalence study, with repeated stimulation cycles, conducted between May 2018 and December 2021. Overall, 44 oocyte donors underwent two identical consecutive ovarian stimulation cycles, one initiated in the FS and the other in the LS. The primary outcome of the study was to evaluate whether FS and LS in the same patient would result in equivalent numbers of euploid embryos following fertilization of oocytes with the same sperm sample.
Overall, 44 oocyte donors underwent two consecutive ovarian stimulation protocols with 150 μg corifollitropin alpha followed by 200 IU recombinant FSH (rFSH) in a fixed GnRH antagonist protocol. The only difference between the two cycles was the day of initiation of ovarian stimulation, which was in the early follicular phase (FS) in one cycle, and in the luteal phase (LS) in the other. Forty-four oocyte recipients participated in the study receiving a mean of six metaphase II (MII) oocytes from each stimulation cycle (FS and LS). All MIIs were inseminated with the corresponding recipient's partner sperm (which had been previously frozen) or donor sperm, in order to safeguard the use of the same sample for either the FS or LS. Following fertilization and blastocyst culture, all generated embryos underwent genetic analysis for aneuploidy screening (preimplantation genetic testing for aneuploidy).
FS resulted in a significantly shorter duration of ovarian stimulation (difference between means (DBM) -1.05 (95% CI -1.89; -0.20)) and a lower total additional dose of daily rFSH was needed (DBM -196.02 (95% CI -319.92; -72.12)) compared with LS. The donors' hormonal profile on the day of trigger was comparable between the two stimulation cycles, as well as the mean number of oocytes (23.70 ± 10.79 versus 23.70 ± 8.81) (DBM 0.00 (95% CI -3.03; 3.03)) and MII oocytes (20.27 ± 9.60 versus 20.73 ± 8.65) (DBM -0.45 (95% CI -2.82; 1.91)) between FS and LS cycles, respectively. Following fertilization, the overall blastocyst formation rate was 60.70% with a euploid rate of 57.1%. Comparisons between the two stimulation cycles did not reveal any significance differences in terms of fertilization rates (71.9% versus 71.4%), blastocyst formation rates (59.4% versus 62%) and embryo euploidy rates (56.9 versus 57.3%) for the comparison of FS versus LS, respectively. The mean number of euploid blastocysts was equivalent between the FS (1.59 ± 1.30) and the LS (1.61 ± 1.17), (DBM -0.02 (90%CI -0.48; 0.44)).
The study was performed in young, potentially fertile oocyte donors who are patients with high blastocyst euploidy rates. Although results may be extrapolated to young infertile women with good ovarian reserve, caution is needed prior to generalizing the results to infertile women of older age.
The current study provides evidence that initiation of ovarian stimulation in the luteal phase in young potentially fertile women may result in a comparable number of oocytes and comparable blastocyst euploidy rates compared with follicular phase stimulation. This may imply that in case of a freeze-all protocol in young patients with good ovarian reserve, clinicians may safely consider initiation of ovarian stimulation during the luteal phase.
This research was supported by an unrestricted grant from MSD/Organon. N.P.P. has received Research grants and honoraria for lectures from: Merck Serono, MSD/Organon, Ferring Pharmaceuticals, Besins Intenational, Roche Diagnostics, IBSA, Theramex, Gedeon Richter. F.M., E.C., M.R. and S.G. declared no conflict of interests.
The study was registered at Clinical Trials Gov (NCT03555942).
Martinez F
,Clua E
,Roca M
,Garcia S
,Polyzos NP
... -
《-》
-
Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF.
Can an artificial intelligence (AI) model predict human embryo ploidy status using static images captured by optical light microscopy?
Results demonstrated predictive accuracy for embryo euploidy and showed a significant correlation between AI score and euploidy rate, based on assessment of images of blastocysts at Day 5 after IVF.
Euploid embryos displaying the normal human chromosomal complement of 46 chromosomes are preferentially selected for transfer over aneuploid embryos (abnormal complement), as they are associated with improved clinical outcomes. Currently, evaluation of embryo genetic status is most commonly performed by preimplantation genetic testing for aneuploidy (PGT-A), which involves embryo biopsy and genetic testing. The potential for embryo damage during biopsy, and the non-uniform nature of aneuploid cells in mosaic embryos, has prompted investigation of additional, non-invasive, whole embryo methods for evaluation of embryo genetic status.
A total of 15 192 blastocyst-stage embryo images with associated clinical outcomes were provided by 10 different IVF clinics in the USA, India, Spain and Malaysia. The majority of data were retrospective, with two additional prospectively collected blind datasets provided by IVF clinics using the genetics AI model in clinical practice. Of these images, a total of 5050 images of embryos on Day 5 of in vitro culture were used for the development of the AI model. These Day 5 images were provided for 2438 consecutively treated women who had undergone IVF procedures in the USA between 2011 and 2020. The remaining images were used for evaluation of performance in different settings, or otherwise excluded for not matching the inclusion criteria.
The genetics AI model was trained using static 2-dimensional optical light microscope images of Day 5 blastocysts with linked genetic metadata obtained from PGT-A. The endpoint was ploidy status (euploid or aneuploid) based on PGT-A results. Predictive accuracy was determined by evaluating sensitivity (correct prediction of euploid), specificity (correct prediction of aneuploid) and overall accuracy. The Matthew correlation coefficient and receiver-operating characteristic curves and precision-recall curves (including AUC values), were also determined. Performance was also evaluated using correlation analyses and simulated cohort studies to evaluate ranking ability for euploid enrichment.
Overall accuracy for the prediction of euploidy on a blind test dataset was 65.3%, with a sensitivity of 74.6%. When the blind test dataset was cleansed of poor quality and mislabeled images, overall accuracy increased to 77.4%. This performance may be relevant to clinical situations where confounding factors, such as variability in PGT-A testing, have been accounted for. There was a significant positive correlation between AI score and the proportion of euploid embryos, with very high scoring embryos (9.0-10.0) twice as likely to be euploid than the lowest-scoring embryos (0.0-2.4). When using the genetics AI model to rank embryos in a cohort, the probability of the top-ranked embryo being euploid was 82.4%, which was 26.4% more effective than using random ranking, and ∼13-19% more effective than using the Gardner score. The probability increased to 97.0% when considering the likelihood of one of the top two ranked embryos being euploid, and the probability of both top two ranked embryos being euploid was 66.4%. Additional analyses showed that the AI model generalized well to different patient demographics and could also be used for the evaluation of Day 6 embryos and for images taken using multiple time-lapse systems. Results suggested that the AI model could potentially be used to differentiate mosaic embryos based on the level of mosaicism.
While the current investigation was performed using both retrospectively and prospectively collected data, it will be important to continue to evaluate real-world use of the genetics AI model. The endpoint described was euploidy based on the clinical outcome of PGT-A results only, so predictive accuracy for genetic status in utero or at birth was not evaluated. Rebiopsy studies of embryos using a range of PGT-A methods indicated a degree of variability in PGT-A results, which must be considered when interpreting the performance of the AI model.
These findings collectively support the use of this genetics AI model for the evaluation of embryo ploidy status in a clinical setting. Results can be used to aid in prioritizing and enriching for embryos that are likely to be euploid for multiple clinical purposes, including selection for transfer in the absence of alternative genetic testing methods, selection for cryopreservation for future use or selection for further confirmatory PGT-A testing, as required.
Life Whisperer Diagnostics is a wholly owned subsidiary of the parent company, Presagen Holdings Pty Ltd. Funding for the study was provided by Presagen with grant funding received from the South Australian Government: Research, Commercialisation, and Startup Fund (RCSF). 'In kind' support and embryology expertise to guide algorithm development were provided by Ovation Fertility. 'In kind' support in terms of computational resources provided through the Amazon Web Services (AWS) Activate Program. J.M.M.H., D.P. and M.P. are co-owners of Life Whisperer and Presagen. S.M.D., M.A.D. and T.V.N. are employees or former employees of Life Whisperer. S.M.D, J.M.M.H, M.A.D, T.V.N., D.P. and M.P. are listed as inventors of patents relating to this work, and also have stock options in the parent company Presagen. M.V. sits on the advisory board for the global distributor of the technology described in this study and also received support for attending meetings.
N/A.
Diakiw SM
,Hall JMM
,VerMilyea MD
,Amin J
,Aizpurua J
,Giardini L
,Briones YG
,Lim AYX
,Dakka MA
,Nguyen TV
,Perugini D
,Perugini M
... -
《-》