Chitosan-based Dy(2)O(3)/CuFe(3)O(4) bio-nanocomposite development, characterization, and drug release kinetics.

来自 PUBMED

作者:

Anwar AImran MRamzan MKhan FAIsmail NHussain AIHussain SMAlsanie WFIqbal HMN

展开

摘要:

Chitosan (CS)/metal oxide (MO) nano-carriers have recently attracted attention due to their great integration into several biomedical applications. Herein, CS and dysprosium oxide based bio-nanocomposites (Dy2O3/CuFe3O4/CS) were prepared using a citrate sol-gel route for biomedical settings at large and drug delivery, in particular. The chemical structure, average crystallite size, and surface morphology of Dy2O3/CuFe3O4/CS bio-nanocomposites were characterized using spectroscopic techniques, including FT-IR, PXRD, and SEM. The prepared nano composite's drug loading or release kinetics were investigated by FT-IR, zeta potential (ZP), and ultraviolet-visible spectroscopy (UV-Vis). In the FT-IR spectrum, the peaks in the range of 800-400 cm-1 confirmed the formation of meta-oxides, while amide bands at 1661 and 1638 cm-1 revealed the existence of CS in the bio-nanocomposite. The peaks at 2θ = 35.46 and 28.5, 39.4 indicated the presence and chemical interaction of Dy2O3 and CuFe3O4, respectively. The crystallite size was <20 nm. The model drug used in the loading and in vitro release assays was ciprofloxacin hydrochloride. Ciprofloxacin's CF stretch caused a modest peak to be seen at 1082 cm-1 and changed in zeta potential value from 7.90 mV to 8.88 mV endorsing that the drug had been loaded onto the nanomaterial. The loading efficiency (%) of CIP onto the composite was from 25 to 30 %, calculated from optical density measurements. Different kinetic models, such as zero-order, first-order, Higuchi, Hixon-Crowell, and Korsmeyer-Peppas, were determined to confirm the drug release mechanism. The percent (%) of drug release from the surface of Dy2O3/CuFe3O4/CS in PBS (pH 7.4), acidic (pH 2.2) and basic (pH 9.4) dissolution media were found to be 70, 28 and 20 %, respectively. Drug kinetics showed that mainly the release is fickian type followed "Fick's law of diffusion", slightly deviated from fickian release (dissolution-dependent system). Korsmeyer-Peppas (R2 0.9773, n < 0.4) and Higuchi's (R2 0.9846) models were the best for fitting controlled drug release data. The results revealed that the Dy2O3/CuFe3O4/CS bio-nanocomposite has good potential for a controlled drug delivery system.

收起

展开

DOI:

10.1016/j.ijbiomac.2022.08.119

被引量:

1

年份:

1970

SCI-Hub (全网免费下载) 发表链接

通过 文献互助 平台发起求助,成功后即可免费获取论文全文。

查看求助

求助方法1:

知识发现用户

每天可免费求助50篇

求助

求助方法1:

关注微信公众号

每天可免费求助2篇

求助方法2:

求助需要支付5个财富值

您现在财富值不足

您可以通过 应助全文 获取财富值

求助方法2:

完成求助需要支付5财富值

您目前有 1000 财富值

求助

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献(229)

参考文献(0)

引证文献(1)

来源期刊

-

影响因子:暂无数据

JCR分区: 暂无

中科院分区:暂无

研究点推荐

关于我们

zlive学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们不忘初心,砥砺前行。

友情链接

联系我们

合作与服务

©2024 zlive学术声明使用前必读