Characterization difference of typical KL1, KL2 and ST11-KL64 hypervirulent and carbapenem-resistant Klebsiella pneumoniae.
Almost all the formation of hypervirulent and carbapenem-resistant Klebsiella pneumoniae follow two major patterns: KL1/KL2 hvKP strains acquire carbapenem-resistance plasmids (CR-hvKP), and carbapenem-resistant Klebsiella pneumoniae (CRKP) strains obtain virulence plasmids (hv-CRKP). These two patterns may pose different phenotypes. In this study, three typical resistance and hypervirulent K. pneumoniae (KL1, KL2, and ST11-KL64), isolating from poor prognosis patients, were selected. Compared with ST11-KL64 hv-CRKP, KL1/KL2 hypervirulent lineages harbor significantly fewer resistance determinants and exhibited lower-level resistance to antibiotics. Notably, though the blaKPC gene could be detected in all these isolates, KL1/KL2 hvKP strain did not exhibit corresponding high-level carbapenem resistance. Unlike the resistance features, we did not observe significant virulence differences between the three strains. The ST11-KL64 hv-CRKP (1403) in this study, showed similar mucoviscosity, siderophores production, and biofilm production compared with KL1 and KL2 hvKP. Moreover, the hypervirulent of ST11-KL64 hvKP also verified with the human lung epithelial cells infection and G. mellonella infection models. Moreover, we found the pLVPK-like virulence plasmid and IncF blaKPC-2 plasmid was crucial for the formation of hypervirulent and carbapenem-resistant K. pneumoniae. The conservation of origin of transfer site (oriT) in these virulence and blaKPC-2 plasmids, indicated the virulence plasmids could transfer to CRKP with the help of blaKPC-2 plasmids. The co-existence of virulence plasmid and blaKPC-2 plasmid facilitate the formation of ST11-KL64 hv-CPKP, which then become nosocomial epidemic under the antibiotic stress. The ST11-KL64 hv-CPKP may poses a substantial threat to healthcare networks, urgent measures were needed to prevent further dissemination in nosocomial settings.
Zhou Y
,Wu C
,Wang B
,Xu Y
,Zhao H
,Guo Y
,Wu X
,Yu J
,Rao L
,Wang X
,Yu F
... -
《-》
Isolation of Hv-CRKP with co-production of three carbapenemases (bla(KPC), bla(OXA-181) or (OXA-232), and bla(NDM-1)) and a virulence plasmid: a study from a Chinese tertiary hospital.
The worldwide dissemination of K. pneumoniae isolates is a significant public health concern, as these organisms possess a unique capacity to acquire genetic elements encoding both resistance and hypervirulence. This study aims to investigate the epidemiological, resistance, and virulence characteristics of K. pneumoniae isolates that carry both virulence plasmids and blaOXA-48-like genes in a tertiary hospital in China.
A total of 217 clinical isolates of carbapenem-resistant K. pneumoniae (CRKP) were collected between April 2020 and March 2022. The antimicrobial susceptibility test was conducted to evaluate the drug resistance profile. All isolates were screened for the presence of genes encoding carbapenemases (blaKPC, blaNDM, blaIMP, blaVIM, and blaOXA-48-like), ESBLs genes (blaCTX-M, blaSHV, blaTEM), and virulence plasmid pLVPK-borne genes (rmpA, rmpA2, iucA, iroB, and peg344) using polymerase chain reaction (PCR) amplification. Clonal lineages were assigned using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The plasmid incompatibility groups were identified using PCR-based replicon typing (PBRT). The transferability of carbapenemase-encoding plasmids and pLVPK-like virulence plasmids was assessed via conjugation. The plasmid location of rmpA2 was determined using S1-Pulsed Field Gel Electrophoresis (S1-PFGE) and southern blotting hybridization. The virulence potential of the isolates was assessed using the string test, capsular serotyping, serum killing assay and a Galleria mellonella larval infection model.
Of the 217 CRKP clinical isolates collected, 23% were identified as carrying blaOXA-48-like genes. All blaOXA-48-like isolates exhibited resistance to commonly used clinical antimicrobial agents, except for ceftazidime/avibactam, colistin, tigecycline, trimethoprim-sulfamethOXAzole, polymyxin B, and nitrofurantoin. The main common OXA-48-like carbapenemase enzymes were found to be blaOXA-181 and blaOXA-232. MLST and PFGE fingerprinting analysis revealed clonal transmission and plasmid transmission. OXA-48-like producing CRKP isolates mainly clustered in K64 ST11 and K47 ST15. Results of the string Test, serum killing assay (in vitro) and Galleria mellonella infection model (in vivo) indicated hypervirulence. PBRT showed that the blaOXA-181 and blaOXA-232 producing hypervirulent carbapenem-resistant Klebsiella pneumoniae (Hv-CRKP) were mainly carried on ColE-type, IncF, and IncX3. Eight clinical isolates of hv-CRKP were identified as carrying three carbapenem-resistant genes (blaKPC, blaOXA-181 or OXA-232, and blaNDM-1). Moreover, Southern blotting hybridization revealed that all eight isolates had a pLVPK-like virulent plasmid (138.9-216.9 kb) with an uneven number and size of plasmid.
In our investigation, we have observed the emergence of hv-CRKP carrying blaOXA-48-like genes, which identified two genetic relationships: clonal transmission and plasmid transmission. PBRT analysis showed that these genes were mainly carried on ColE-type, IncF, and IncX3 plasmids. These isolates have been shown to be hypervirulent in vitro and in vivo. Additionally, eight clinical isolates of hv-CRKP were identified as carrying three carbapenem-resistant genes (blaKPC, blaOXA-181 or OXA-232, and blaNDM-1) and carrying a pLVPK-like virulent plasmid. Hence, our findings highlight the need for further investigation and active surveillance of hypervirulent OXA-48-like producing Hv-CRKP isolates to control their transmission.
Li P
,Luo WY
,Xiang TX
,Peng TX
,Luo S
,He ZY
,Liao W
,Wei DD
,Liu P
,Wan LG
,Zhang W
,Liu Y
... -
《Frontiers in Microbiology》